ďťż

Algebra Kubusia dla Liceum

Baza znalezionych fraz

polsk riksdag

Algebra Kubusia
dla Liceum

Spis treści
1.0 Teoria spójników implikacyjnych =>, ~> i ~~> 1
1.1 Definicje spójników implikacyjnych w zdarzeniach 2
1.2 Definicja spójników implikacyjnych w zbiorach 2
1.3 Implikacyjne operatory logiczne 4
2.0 Definicje operatorów implikacyjnych 4
2.1 Operator chaosu |~~> 5
2.2 Definicja operatora implikacji prostej |=> 8
2.2.1 Prawo Komandora 10
2.2.2 Matematyczne wnioskowanie z prawa Komandora 13
2.3 Definicja operatora implikacji odwrotnej |~> 15
2.3.1 Prawo Komandora 18
2.3.2 Matematyczne wnioskowanie z prawa Komandora 20
2.4 Równanie ogólne implikacji 22
2.5 Definicja równoważności <=> 24
2.5.1 Prawo Komandora 25
2.5.2 Matematyczne wnioskowanie z prawa Komandora 28
2.5.3 Alternatywne definicje równoważności 30
2.5.4 Prawa kontrapozycji w równoważności 31

1.0 Teoria spójników implikacyjnych =>, ~> i ~~>

Definicja zdania warunkowego Jeśli p to q” wszystkich ludzi jest niesłychanie trywialna:
A.
Jeśli zajdzie przyczyna p to zajdzie skutek q

W logice matematycznej między p i q mogą być tylko i wyłącznie trzy spójniki implikacyjne.
I
p=>q - warunek wystarczający =>, wymuszam dowolne p i pojawia się q
II
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
III
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q

1.1 Definicje spójników implikacyjnych w zdarzeniach

I
p=>q - warunek wystarczający =>, wymuszam dowolne p i pojawia się q
A1.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH =1
Warunek wystarczający => spełniony bo wymuszam deszcz i pojawiają się chmury

II
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
A2.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Warunek konieczny ~> spełniony bo zabieram chmury i znika mi możliwość padania

III
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q
B2.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P = CH*~P =1
Kwantyfikator mały ~~>spełniony bo możliwa jest sytuacja „są chmury” i „nie pada”
B2’.
Jeśli jutro będzie pochmurno to może ~> nie padać
CH~>~P =0
Warunek konieczny ~> w zdaniu B2’ nie jest spełniony bo zabieram chmury nie wykluczając sytuacji „nie pada”.

Prawo Czarnej Mamby (roznoszące w puch totalnie całą logikę „matematyczną” ziemian):
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Przykłady:
A1’.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „pada” i „są chmury”
A2’.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „są chmury” i „pada”

1.2 Definicja spójników implikacyjnych w zbiorach

1.
=> - warunek wystarczający (kwantyfikator duży)
Zbiór na podstawie wektora => jest podzbiorem zbioru wskazywanego przez strzałkę wektora =>
A.
Jeśli zajdzie przyczyna p to na pewno => zajdzie skutek q
p=>q
Zbiór p jest podzbiorem zbioru q z czego wynika że:
Zajście p wystarcza => dla zajścia q
Zajście p gwarantuje => zajście q
To samo zdanie zapisane kwantyfikatorem dużym:
Dla każdego elementu x, jeśli x należy do zbioru p(x) to na pewno => x należy do zbioru q(x)
/\x p(x)=>q(x)
Przykład:
A.
Jeśli liczba jest podzielna przez 8 to na pewno => jest podzielna przez 2
Jeśli zajdzie przyczyna, wylosuję liczbę podzielną przez 8, to na pewno => zajdzie skutek, liczba ta będzie podzielna przez 2
P8=>P2
Przyjmujemy sensowną dziedzinę:
D=[1,2,3,4,5,6,7,8..] - zbiór liczb naturalnych
Definicja warunku wystarczającego => spełniona bo:
Zbiór P8=[8,16,24..] jest podzbiorem => zbioru P2=[2,4,6,8..]
Przynależność liczby do zbioru P8 daje nam gwarancję matematyczną => iż ta liczba należy także do zbioru P2.

2.
~> - warunek konieczny
Zbiór na podstawie wektora ~> jest nadzbiorem zbioru wskazywanego przez strzałkę wektora ~>
Jeśli zajdzie przyczyna p to może ~> zajść skutek q
p~>q
Zajście p jest warunkiem koniecznym ~> zajścia q
Zabieram p i znika mi możliwość zajścia q
Przykład:
A.
Jeśli liczba jest podzielna przez 2 to może ~> być podzielna przez 8
Jeśli zajdzie przyczyna, wylosuję liczbę podzielną przez 2, to może ~> zajść skutek, liczba ta będzie podzielna 8
P2~>P8
Definicja warunku koniecznego ~> spełniona bo:
Zbiór P2=[2,4,6,8..] jest nadzbiorem ~> zbioru P8=[8,16,24..]
Zabieram zbiór P2 i znika mi zbiór P8

3.
~~> - naturalny spójnik „może” ~~> (kwantyfikator mały)
Zbiór na podstawie wektora ~~> musi mieć co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Tu wystarczy znaleźć jeden wspólny element zbiorów p i q co kończy dowód prawdziwości tego zdania.
To samo zdanie zapisane kwantyfikatorem małym:
\/x p(x)*q(x)
Istnieje element x należący jednocześnie do zbiorów p(x) i q(x)
Przykład:
A.
Jeśli liczba jest podzielna przez 8 to może~~> być podzielna przez 2
Jeśli zajdzie przyczyna, wylosuję liczbę podzielną przez 2, to może ~~> zajść skutek, liczba ta będzie podzielna 8
P8~~>P2 = P8*P2 =1 bo 8
Pokazuję jeden wspólny element zbiorów P8=[8,16,24..] i P2=[2,4,6,8..] co kończy dowód prawdziwości zdania zapisanego kwantyfikatorem małym ~~>.

1.3 Implikacyjne operatory logiczne

Implikacyjne operatory logiczne to zawsze seria czterech zdań A, B, C i D z precyzyjną kombinacją spójników implikacyjnych.

Implikacyjne operatory logiczne to:
|~~> - operator chaosu
|=> - operator implikacji prostej
|~> - operator implikacji odwrotnej
<=> - operator równoważności

Operator chaosu |~~>:
[linki]

Operator implikacji prostej |=>:
[linki]

Operator implikacji odwrotnej |~>:
[linki]

Operator równoważności <=>:
[linki]

2.0 Definicje operatorów implikacyjnych

Definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q

Operatory implikacyjne to:
|~~> - operator chaosu
|=> - operator implikacji prostej
|~> - operator implikacji odwrotnej
<=> - operator równoważności

Zero-jedynkowe definicje operatorów implikacyjnych:
[linki]
Na mocy definicji zachodzi:
p|=>q ## p|~>q ## p<=>q ## p|~~>q
gdzie:
## - różne na mocy definicji
Dowód:
Dla identycznej matrycy wymuszeń na wejściach p i q kolumny wynikowe 3,4,5,6 są różne

2.1 Operator chaosu |~~>

Definicja operatora chaosu |~~>:[/b]
Zbiór p ma cześć wspólną ze zbiorem q i żaden z nich nie jest podzbiorem drugiego
p|~~>q
Zapis matematyczny:
p|~~>q = (p~~>q)*~(p=>q)*~(q=>p)


Symboliczna definicja operatora chaosu w spójniku ~~> oraz w spójnikach „i”(*):
[linki]
Definicję symboliczną operatora chaosu |~~> w kwantyfikatorze małym ~~> tworzymy z tabeli zero-jedynkowej ABCD1234 zapisując w kolejnych liniach zmienne z nagłówka tej tabeli o wartości logicznej równej jeden. Kolumnę wynikową determinuje nam definicja operatora chaosu w zbiorach.
Możemy zatem powiedzieć, że w symbolicznej definicji operatora chaosu mamy wszystkie zmienne sprowadzone do jedynek. Pokazuje to tabela symboliczna ABCDabcd.

W algebrze Kubusia zbiory mają wartość logiczną:
1 - zbiór niepusty [x] (istnieje, zawiera co najmniej jeden element)
0 - zbiór pusty [] (nie istnieje, nie zawiera żadnego elementu)

Zauważmy, że w definicji symbolicznej mamy wszystkie zmienne sprowadzone do jedynek.

Wnioski:
1.
W algebrze Kubusia, w tabeli symbolicznej opisanej kwantyfikatorami małymi ~~> żaden ze zbiorów p, q, ~p i ~q nie może być zbiorem pustym, wszystkie muszą istnieć.
2.
W algebrze Kubusia, w tabeli symbolicznej opisanej kwantyfikatorami małymi ~~> zbiory puste mogą występować wyłącznie jako wynik iloczynu logicznego zbiorów rozłącznych

Zero-jedynkowa definicja operatora chaosu |~~> to tabela ABCD129.
[linki]
W świecie rzeczywistym mając dowolne zdanie pod kwantyfikatorem małym ~~> nie wiemy w skład jakiego operatora to zdanie wchodzi, musimy to dopiero udowodnić badając serię czterech zdań A, B, C, D pod kwantyfikatorem małym ~~> we wszystkich możliwych przeczeniach p i q.

Prawo Komandora:
W świecie rzeczywistym to definicja symboliczna przez wszystkie możliwe przeczenia p i q w kwantyfikatorze małym ~~> (ABCD5678) wymusza tabelę zero-jedynkową operatora logicznego, nigdy odwrotnie!

Przykład:
Zbadaj w skład jakiego operatora logicznego wchodzi zdanie A.
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3
Przyjmując za dziedzinę:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych

Rozwiązanie:
Wyznaczenie wszystkich możliwych zbiorów:
Dziedzina:
LN=[1,2,3,4,5,6,7,8,9..] - zbiór liczb naturalnych
P8=[8,16,24..] =1 - zbiór niepusty
P3=[3,6,9,12,15,18,21,24..] =1 - zbiór niepusty
~P8=[LN-P8] = [1,2,3,4,5,6,7..9..] - zbiór niepusty
~P3=[LN-P3] = [1,2..4,5..7,8..] - zbiór niepusty

Analiza przez wszystkie możliwe przeczenia:
A.
Jeśli liczba jest podzielna przez 8 to może ~~> być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
B.
Jeśli liczba jest podzielna przez 8 to może ~~> nie być podzielna przez 3
P8~~>~P3 = P8*~P3 =1 bo 8
C.
Jeśli liczba nie jest podzielna przez 8 to może ~~> nie być podzielna przez 3
~P8~~>~P3 = ~P8*~P3 =1 bo 2
D.
Jeśli liczba nie jest podzielna przez 8 to może ~~> być podzielna przez 3
~P8~~>P3 = ~P8*P3 =1 bo 3

Odpowiedź:
Zdanie A wchodzi w skład definicji operatora chaosu:
P8|~~>P3

2.2 Definicja operatora implikacji prostej |=>

Definicja operatora implikacji prostej |=>:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|=>q = (p=>q)*~[p=q]

Diagram implikacji prostej |=> w zbiorach:


Definicja podzbioru:
p=>q
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Pełną definicję symboliczną implikacji prostej p|=>q w logice dodatniej (bo q) odczytujemy bezpośrednio z diagramu.

Symboliczna definicja implikacji prostej p|=>q w kwantyfikatorze małym ~~>:
[linki]
Symboliczna definicja implikacji prostej p|=>q w spójnikach implikacyjnych =>,~>,~~>:
[linki]
Symboliczna definicja implikacji prostej p|=>q wraz z kodowaniem zero-jedynkowym:
[linki]
Doskonale widać, iż w definicjach symbolicznych wszystkie zmienne mamy sprowadzone do jedynek.
Zero-jedynkowa definicja operatora implikacji prostej |=> to tabela ABCD129.
[linki]
Tożsamość kolumn wynikowych 9 i 0 jest dowodem formalnym prawa Kubusia dla operatorów:
p|=>q = ~p|~>~q
Prawo Kubusia obowiązuje też na poziomie spójników implikacyjnych:
p=>q = ~p~>~q

Definicja tożsamości „=” w algebrze Kubusia:
p=>q = ~p~>~q
Prawdziwość zdania po dowolnej stronie znaku „=” wymusza prawdziwość po drugiej stronie
Fałszywość zdania po dowolnej stronie znaku „=” wymusza fałszywość po drugiej stronie

Analiza matematyczna symbolicznej definicji implikacji prostej |=>:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Definicja warunku wystarczającego => spełniona bo:
Zbiór p jest podzbiorem => zbioru q
Dowolny element zbioru p należy => do zbioru q
Dodatkowo zbiory p i q nie są tożsame co wymusza definicję implikacji prostej |=> w logice dodatniej (bo q):
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q
p|=>q = (p=>q)*~[p=q]
Twierdzenie:
Jeśli zbiór p jest podzbiorem => zbioru q to iloczyn logiczny zbiorów p*q jest równy p
Stąd mamy definicję warunku wystarczającego => w zbiorach:
A: p=>q = [p*q=p] =1
Wartość logiczna jeden bo zbiór p jest podzbiorem => zbioru q, a nie że zbiór wynikowy jest niepusty!

Bezpośrednio z prawdziwości warunku wystarczającego A wynika fałszywość kontrprzykładu B.
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =[] =0
Oba zbiory istnieją (p=1 i ~q=1) ale są rozłączne, co wymusza w wyniku zbiór pusty o wartości logicznej 0.

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego => A:
A: p=>q
Nazywamy zdanie B z zanegowanym następnikiem, kodowane naturalnym spójnikiem „może” ~~>:
B: p~~>~q = p*~q
Prawdziwość kontrprzykładu B wymusza fałszywość warunku wystarczającego A (i odwrotnie)
Fałszywość kontrprzykładu B wymusza prawdziwość warunku wystarczającego A (i odwrotnie)

Zauważmy, że udowodnienie iż żaden element zbioru p nie należy do zbioru ~q determinuje przynależność wszystkich elementów p do zbioru q, widać to doskonale na powyższym diagramie.
Jest to zatem dowód tożsamy do dowodu prawdziwości warunku wystarczającego A wprost, gdzie dowodzimy iż każdy element zbioru p należy do zbioru q.
Zauważmy także, że wystarczy znaleźć jeden element x ze zbioru p który należy do zbioru ~q i już kontrprzykład B jest prawdziwy, co wymusza fałszywość warunku wystarczającego A.

.. a jeśli zajdzie ~p?
Prawo Kubusia:
p=>q = ~p~>~q

C.
Jeśli zajdzie ~p to może ~> zajść ~q
~p~>~q
Definicja warunku koniecznego ~> spełniona bo:
Zbiór ~p jest nadzbiorem ~> dla zbioru ~q
Zabieram zbiór ~p i znika mi zbiór ~q, co doskonale widać na powyższym diagramie.
Dodatkowo zbiory ~p i ~q nie są tożsame co wymusza definicję implikacji odwrotnej |~> w logice ujemnej (bo ~p):
Zbiór ~p jest nadzbiorem ~> zbioru ~q i nie jest tożsamy ze zbiorem ~q
~p|~>~q = (~p~>~q)*~[~p=~q]
Twierdzenie:
p~>q
Jeśli zbiór p jest nadzbiorem ~> zbioru q to iloczyn logiczny zbiorów p*q jest równy q
Stąd mamy definicję warunku koniecznego ~> w zbiorach:
p~>q = [p*q=q] =1
Wartość logiczna jeden bo zbiór p jest nadzbiorem ~> zbioru q, a nie że zbiór wynikowy jest niepusty!
W przełożeniu na nasze zdanie C mamy:
~p~>~q = [~p*~q=~q] =1
co doskonale widać na diagramie implikacji prostej wyżej.
lub
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =1
W zdaniu D nie zachodzi warunek konieczny ~> bo prawo Kubusia:
D: ~p~>q = B: p=>~q
Prawa strona tożsamości logicznej jest fałszem (patrz zdanie B), zatem w zdaniu D nie może zachodzić warunek konieczny ~>.
Zdanie D jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden element wspólny dla zbiorów ~p i q, wystarczy sama możliwość jednoczesnego zajścia sytuacji ~p i q.

2.2.1 Prawo Komandora

W świecie rzeczywistym badając dowolne zdanie pod kwantyfikatorem małym ~~> nie wiemy w skład jakiego operatora to zdanie wchodzi, musimy to dopiero udowodnić badając zdania pod kwantyfikatorem małym ~~> we wszystkich możliwych przeczeniach p i q.

Definicja kwantyfikatora małego ~~> w zbiorach:
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdanie pod kwantyfikatorem małym ~~> jest prawdziwe wtedy i tylko wtedy gdy istnieje wspólna cześć zbiorów p i q
Przykład:
A.
Jeśli zwierze jest psem to może ~~> mieć cztery łapy
P~~>4L = P*4L =1 - bo istnieje wspólna cześć zbiorów P i 4L, to pies

Definicja kwantyfikatora małego ~~> w zdarzeniach
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdanie pod kwantyfikatorem małym ~~> jest prawdziwe, gdy możliwe jest jednoczesne zajście zdarzeń p i q
Przykład:
A.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1 - bo możliwe jest zdarzenie „pada” i „są chmury”

W obu definicjach badamy rzeczywiste relacje między p i q.
Wniosek:
W obu definicjach zmienne p i q mogą być w dowolnych przeczeniach, to bez znaczenia.

Prawo Czarnej Mamby:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Przykłady:
A1.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „pada” i „są chmury”
A2.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „są chmury” i „pada”

Prawo Komandora:
W świecie rzeczywistym to definicja symboliczna przez wszystkie możliwe przeczenia p i q w kwantyfikatorze małym ~~> (ABCD5678) wymusza tabelę zero-jedynkową operatora logicznego, nigdy odwrotnie!

Korzystając z prawa Czarnej Mamby i prawa Komandora dowolne zdanie „Jeśli p to q” możemy zapisać w kwantyfikatorze małym po czym skorzystać z algorytmu Komandora.

Algorytm Komandora:
1.
Dowolne zdanie warunkowe „Jeśli p to q” przekształcamy do zdania pod kwantyfikatorem małym ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q
2.
Tworzymy serię zdań A, B, C i D uwzględniającą wszystkie możliwe przeczenia p i q
Wszystkich możliwych przypadków może być tylko i wyłącznie cztery.
[linki]
3.
Otrzymana kolumna wynikowa decyduje o tym, z jakim operatorem logicznym mamy do czynienia.

Zauważmy, że kolejność linii nie ma tu najmniejszego znaczenia jednak by od razu, bez porządkowania linii otrzymać założoną, definicyjną tabelę zero-jedynkową (Tabela 3IP), musimy się trzymać kolejności przeczeń przedstawionej w Tabeli 5 (zgodność z tabelą 3IP).

Przykład działania algorytmu Komandora:

Zbadaj w skład jakiego operatora logicznego wchodzi zdanie A.
A.
Jeśli jutro będzie padło to może ~~> być pochmurno
P~~>CH = P*CH =1
Definicja kwantyfikatora małego spełniona bowiem możliwa jest sytuacja „pada” i „są chmury”

Korzystając z algorytmu Komandora możemy precyzyjnie ustalić w skład jakiego operatora logicznego wchodzi to zdanie.

Rozwiązanie:
A.
Jeśli jutro będzie padło to może ~~> być pochmurno
P~~>CH = P*CH =1
Możliwa jest sytuacja „pada” i „są chmury”
B.
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH =0
Niemożliwa jest sytuacja „pada” i „nie ma chmur”
C.
Jeśli jutro nie będzie padało to może ~~> nie być pochmurno
~P~~>~CH = ~P*~CH =1
Możliwa jest sytuacja „nie pada” i „nie ma chmur”
D.
Jeśli jutro będzie padało to może ~~> być pochmurno
~P~~>CH = ~P*CH =1
Możliwa jest sytuacja „nie pada” i „są chmury”

Nanosimy powyższą analizę na tabelę zero-jedynkową.
[linki]
Doskonale widać, iż nasze zdanie A wchodzi w skład operatora implikacji prostej P|=>CH o definicji zero-jedynkowej w tabeli ABCD129.

2.2.2 Matematyczne wnioskowanie z prawa Komandora

Ogólne definicje spójników implikacyjnych:
p=>q - warunek wystarczający =>, wymuszam dowolne p i pojawia się q (kwantyfikator duży)
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q

Definicja kontrprzykładu w algebrze Kubusia i logice matematycznej ziemian!
Kontrprzykładem dla warunku wystarczającego A nazywamy zdanie B z zanegowanym następnikiem kodowane kwantyfikatorem małym ~~>:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Zajście p jest warunkiem wystarczającym => dla zajścia q
Kontrprzykład dla zdania A to zdanie B.
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q
W kwantyfikatorze małym ~~> wystarczy pokazać jeden wspólny element zbiorów p i ~q czyniący to zdanie prawdziwym.

Rozstrzygnięcia:
Fałszywość kontrprzykładu B wymusza prawdziwość warunku wystarczającego A
Prawdziwość kontrprzykładu B wymusza fałszywość warunku wystarczającego A

Mamy tu do czynienia z równoważnością:
A: p=>q =1 <=> B: p~~>~q =0
B: p~~>~q =1 <=> A: p=>q =0

Zauważmy, iż powyższą definicję kontrprzykładu na 100% stosują w praktyce wszyscy ziemscy matematycy (mimo że jej nie znają!) z czego wynika, iż jedyna poprawna definicja kwantyfikatora małego ~~> to ta związana z definicją kontrprzykładu jak wyżej.

Prawo Czarnej Mamby:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>.

Prawo Kobry:
Kwantyfikator mały ~~> jest konieczny i wystarczający do wszelkich rozstrzygnięć w logice matematycznej.

Dowód:
Zapiszmy symboliczną analizę naszego przykładu:
[linki]
Zauważmy, że sytuację „pada” (P) opisują wyłącznie linie AB56789.

Wnioskowanie z linii AB56789:
B.
Jeśli jutro będzie padało to może ~~> nie być pochmurno
P~~>~CH = P*~CH =0
Na mocy definicji kontrprzykładu fałszywość zdania B wymusza prawdziwość warunku wystarczającego A.
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH =1
Potwierdzenie tego faktu:
Padanie deszczu jest warunkiem wystarczającym => dla istnienia chmur, bo zawsze gdy pada, są chmury.

Podobnie sytuację „nie pada” (~P) opisują wyłącznie linie CD56789.
Wnioskowanie z kompletnej tabeli symbolicznej ABCD56789.

Wiemy że w linii A spełniony jest warunek wystarczający =>:
A: P=>CH =1
Z tego faktu oraz z istnienia jedynki w punkcie D9 wyciągamy wniosek iż pojęcia „pada” i „chmury” nie mogą być tożsame.

Determinuje to definicję implikacji prostej |=>:
P|=>CH = (P=>CH)*~[P=CH]

Warunek wystarczający => w linii A zawsze determinuje warunek konieczny ~> w linii C niezależnie od tego czy w punkcie D9 mamy jedynkę (implikacja prosta |=>), czy też zero (równoważność).
C.
Jeśli jutro nie będzie padało to może ~> być pochmurno
~P~>~CH =1
Brak opadów jest warunkiem koniecznym ~> aby jutro nie było pochmurno, bo jak pada to na pewno => są chmury.
Zdanie wyżej to nic innego jak prawo Kubusia dla spójników implikacyjnych:
A: P=>CH = C: ~P~>~CH

Na mocy powyższego wnioskowania matematycznego możemy zapisać kompletną definicję operatora implikacji prostej |=> w spójnikach implikacyjnych.
[linki]

2.3 Definicja operatora implikacji odwrotnej |~>

Definicja operatora implikacji odwrotnej |~>:
Zbiór p jest nadzbiorem ~> zbioru q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|~>q = (p~>q)*~[p=q]

Diagram implikacji odwrotnej |~> w zbiorach:


Definicja nadzbioru ~>:
p~>q
Zbiór p jest nadzbiorem ~> zbioru q wtedy i tylko wtedy gdy każdy element zbioru q należy do zbioru p

Symboliczna definicja implikacji odwrotnej p|~>q w kwantyfikatorze małym ~~>:
[linki]
Symboliczna definicja implikacja odwrotnej |~> w spójnikach implikacyjnych ~>, =>, ~~>
[linki]
Symboliczna definicja implikacji odwrotnej p|~>q wraz z kodowaniem zero-jedynkowym:
[linki]
Doskonale widać, iż w definicjach symbolicznych wszystkie zmienne mamy sprowadzone do jedynek.
Zero-jedynkowa definicja operatora implikacji odwrotnej |~> to tabela ABCD129.
[linki]
Tożsamość kolumn wynikowych 9 i 0 jest dowodem formalnym prawa Kubusia dla operatorów:
p|~>q = ~p|=>~q
Prawo Kubusia obowiązuje też na poziomie spójników implikacyjnych:
p~>q = ~p=>~q

Definicja tożsamości „=” w algebrze Kubusia:
p~>q = ~p=>~q
Prawdziwość zdania po dowolnej stronie znaku „=” wymusza prawdziwość po drugiej stronie
Fałszywość zdania po dowolnej stronie znaku „=” wymusza fałszywość po drugiej stronie

Szczegółowa, symboliczna definicja implikacji odwrotnej:
A.
Jeśli zajdzie p to może ~> zajść q
p~>q
Definicja warunku koniecznego ~> spełniona bo:
Zbiór p jest nadzbiorem ~> dla zbioru q
Zabieram zbiór p i znika mi zbiór q
Dodatkowo zbiory p i q nie są tożsame co wymusza definicję implikacji odwrotnej |~> w logice dodatniej (bo p):
Zbiór p jest nadzbiorem ~> zbiory q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|~>q = (p~>q)*~[p=q]
Twierdzenie:
p~>q
Jeśli zbiór p zawiera w sobie ~> zbiór q to iloczyn logiczny zbiorów p*q jest równy q
Stąd mamy definicję warunku koniecznego ~> w zbiorach:
p~>q = [p*q=q] =1
Wartość logiczna jeden bo zbiór p jest nadzbiorem ~> zbioru q, a nie że zbiór wynikowy jest niepusty!
W przełożeniu na nasze zdanie A mamy:
p~>q = [p*q=q] =1
co doskonale widać na diagramie implikacji odwrotnej wyżej.
lub
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q =1
W zdaniu B nie zachodzi warunek konieczny ~> bo prawo Kubusia:
B: p~>~q = D: ~p=>q
Prawa strona tożsamości logicznej jest fałszem bo zbiór ~p nie jest podzbiorem => zbioru q, zatem w zdaniu B nie może zachodzić warunek konieczny ~>.
Zdanie B jest prawdziwe na mocy naturalnego spójnika „może” ~~>, wystarczy pokazać jeden element wspólny dla zbiorów p i ~q, wystarczy sama możliwość jednoczesnego zajścia sytuacji p i ~q.

.. a jeśli zajdzie ~p?
Prawo Kubusia:
p~>q = ~p=>~q

C.
Jeśli zajdzie ~p to na pewno => zajdzie ~q
~p=>~q
Definicja warunku wystarczającego => spełniona bo:
Zbiór ~p jest podzbiorem => zbioru ~q
Dowolny element zbioru ~p zawiera się => w zbiorze ~q
Dowolny element zbioru ~p należy => do zbioru ~q
Dodatkowo zbiory ~p i ~q nie są tożsame co wymusza definicję implikacji prostej |=> w logice ujemnej (bo ~q):
Zbiór ~p jest podzbiorem => zbioru ~q i nie jest tożsamy ze zbiorem ~q, co matematycznie zapisujemy ~[~p=~q]
~p|=>~q = (~p=>~q)*~[~p=~q]
Twierdzenie:
Jeśli zbiór ~p zawiera się => w zbiorze ~q to iloczyn logiczny zbiorów ~p*~q jest równy ~p
Stąd mamy definicję warunku wystarczającego => w zbiorach:
A: ~p=>~q = [~p*~q=~p] =1
Wartość logiczna jeden bo zbiór ~p zawiera się => w zbiorze ~q, a nie że zbiór wynikowy jest niepusty!
Bezpośrednio z prawdziwości warunku wystarczającego C wynika fałszywość kontrprzykładu D.
D.
Jeśli zajdzie ~p to może ~~> zajść q
~p~~>q = ~p*q =[] =0
Oba zbiory istnieją (~p=1 i q=1) ale są rozłączne, co wymusza w wyniku zbiór pusty o wartości logicznej 0.

Definicja kontrprzykładu:
Kontrprzykładem dla warunku wystarczającego => C:
C: ~p=>~q
Nazywamy zdanie D z zanegowanym następnikiem, kodowane naturalnym spójnikiem „może” ~~>:
D: ~p~~>q
Prawdziwość kontrprzykładu D wymusza fałszywość warunku wystarczającego C (i odwrotnie)
Fałszywość kontrprzykładu D wymusza prawdziwość warunku wystarczającego C (i odwrotnie)

Zauważmy, że udowodnienie iż żaden element zbioru ~p nie należy do zbioru q determinuje przynależność wszystkich elementów ~p do zbioru ~q, widać to doskonale na powyższym diagramie.
Jest to zatem dowód tożsamy do dowodu prawdziwości warunku wystarczającego C wprost, gdzie dowodzimy iż każdy element zbioru ~p należy do zbioru ~q.
Zauważmy także, że wystarczy znaleźć jeden element x ze zbioru ~p który należy do zbioru q i już kontrprzykład B jest prawdziwy, co wymusza fałszywość warunku wystarczającego C.

2.3.1 Prawo Komandora

W świecie rzeczywistym badając dowolne zdanie pod kwantyfikatorem małym ~~> nie wiemy w skład jakiego operatora to zdanie wchodzi, musimy to dopiero udowodnić badając zdania pod kwantyfikatorem małym ~~> we wszystkich możliwych przeczeniach p i q.

Definicja kwantyfikatora małego ~~> w zbiorach:
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdanie pod kwantyfikatorem małym ~~> jest prawdziwe wtedy i tylko wtedy gdy istnieje wspólna cześć zbiorów p i q
Przykład:
A.
Jeśli zwierze jest psem to może ~~> mieć cztery łapy
P~~>4L = P*4L =1 - bo istnieje wspólna cześć zbiorów P i 4L, to pies

Definicja kwantyfikatora małego ~~> w zdarzeniach
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdanie pod kwantyfikatorem małym ~~> jest prawdziwe, gdy możliwe jest jednoczesne zajście zdarzeń p i q
Przykład:
A.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1 - bo możliwe jest zdarzenie „pada” i „są chmury”

W obu definicjach badamy rzeczywiste relacje między p i q.
Wniosek:
W obu definicjach zmienne p i q mogą być w dowolnych przeczeniach, to bez znaczenia.

Prawo Czarnej Mamby:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Przykłady:
A1.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „pada” i „są chmury”
A2.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „są chmury” i „pada”

Prawo Komandora:
W świecie rzeczywistym to definicja symboliczna przez wszystkie możliwe przeczenia p i q w kwantyfikatorze małym ~~> (ABCD5678) wymusza tabelę zero-jedynkową operatora logicznego, nigdy odwrotnie!

Korzystając z prawa Kobry i prawa Komandora dowolne zdanie „Jeśli p to q” możemy zapisać w kwantyfikatorze małym po czym skorzystać z algorytmu Komandora.

Algorytm Komandora:
1.
Dowolne zdanie warunkowe „Jeśli p to q” przekształcamy do zdania pod kwantyfikatorem małym ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q
2.
Tworzymy serię zdań A, B, C i D uwzględniającą wszystkie możliwe przeczenia p i q
Wszystkich możliwych przypadków może być tylko i wyłącznie cztery.
[linki]
3.
Otrzymana kolumna wynikowa decyduje o tym, z jakim operatorem logicznym mamy do czynienia.

Zauważmy, że kolejność linii nie ma tu najmniejszego znaczenia jednak by od razu, bez porządkowania linii otrzymać założoną, definicyjną tabelę zero-jedynkową (Tabela 3IP), musimy się trzymać kolejności przeczeń przedstawionej w Tabeli 5 (zgodność z tabelą 3IP).

Przykład działania algorytmu Komandora:

Zbadaj w skład jakiego operatora logicznego wchodzi zdanie A.
A.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Definicja kwantyfikatora małego spełniona bowiem możliwa jest sytuacja „są chmury” i „pada”

Korzystając z algorytmu Komandora możemy precyzyjnie ustalić w skład jakiego operatora logicznego wchodzi to zdanie.

Rozwiązanie:
A.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Możliwa jest sytuacja „są chmury” i „pada”
B.
Jeśli jutro będzie pochmurno to może ~~> nie padać
CH~~>~P = CH*~P =1
Możliwa jest sytuacja „są chmury” i „pada”
C.
Jeśli jutro nie będzie pochmurno to może ~~> nie padać
~CH~~>~P = ~CH*~P =1
Możliwa jest sytuacja „nie ma chmur” i „nie pada”
D.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =0
Niemożliwa jest sytuacja „nie ma chmur” i „pada”

Nanosimy powyższą analizę na tabelę zero-jedynkową.
[linki]
Doskonale widać, iż nasze zdanie A wchodzi w skład operatora implikacji odwrotnej |~> o definicji zero-jedynkowej w tabeli ABCD129.

2.3.2 Matematyczne wnioskowanie z prawa Komandora

Ogólne definicje spójników implikacyjnych:
p=>q - warunek wystarczający =>, wymuszam dowolne p i pojawia się q (kwantyfikator duży)
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q

Definicja kontrprzykładu w algebrze Kubusia i logice matematycznej ziemian!
Kontrprzykładem dla warunku wystarczającego A nazywamy zdanie B z zanegowanym następnikiem kodowane kwantyfikatorem małym ~~>:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Zajście p jest warunkiem wystarczającym => dla zajścia q
Kontrprzykład dla zdania A to zdanie B.
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q
W kwantyfikatorze małym ~~> wystarczy pokazać jeden wspólny element zbiorów p i ~q czyniący to zdanie prawdziwym.

Rozstrzygnięcia:
Fałszywość kontrprzykładu B wymusza prawdziwość warunku wystarczającego A
Prawdziwość kontrprzykładu B wymusza fałszywość warunku wystarczającego A

Mamy tu do czynienia z równoważnością:
A: p=>q =1 <=> B: p~~>~q =0
B: p~~>~q =1 <=> A: p=>q =0

Zauważmy, iż powyższą definicję kontrprzykładu na 100% stosują w praktyce wszyscy ziemscy matematycy (mimo że jej nie znają!) z czego wynika, iż jedyna poprawna definicja kwantyfikatora małego ~~> to ta związana z definicją kontrprzykładu jak wyżej.

Prawo Czarnej Mamby:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>.

Prawo Kobry:
Kwantyfikator mały ~~> jest konieczny i wystarczający do wszelkich rozstrzygnięć w logice matematycznej.

Dowód:
Zapiszmy symboliczną analizę naszego przykładu:
[linki]
Zauważmy, że sytuację „nie ma chmur” opisują wyłącznie linie CD56789.

Wnioskowanie z linii CD56789:
D.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =0
Na mocy definicji kontrprzykładu fałszywość zdania D wymusza prawdziwość warunku wystarczającego C.
C.
Jeśli jutro nie będzie pochmurno to na pewno => nie będzie padać
~CH=>~P =1
Potwierdzenie tego faktu:
Brak chmur jest warunkiem wystarczającym => dla braku opadów, bo zawsze gdy nie ma chmur, to nie pada.

Podobnie sytuację „są chmury” opisują wyłącznie linie AB567689.
Wnioskowanie z kompletnej tabeli symbolicznej ABCD56789.

Wiemy że w linii C spełniony jest warunek wystarczający =>:
C: ~CH=>~~P =1
Z tego faktu oraz z istnienia jedynki w punkcie A2 wyciągamy wniosek iż pojęcia „chmury” i „pada” nie mogą być tożsame.

Warunek wystarczający => w linii C zawsze determinuje warunek konieczny ~> w linii A niezależnie od tego czy w punkcie A2 mamy jedynkę (implikacja odwrotna CH|~>P), czy też zero (równoważność <=>).
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury są warunkiem koniecznym ~> dla opadów, bo jak nie ma chmur to na pewno => nie pada
Zdanie wyżej to nic innego jak prawo Kubusia dla spójników implikacyjnych:
A: CH~>P = C: ~CH=>~P
Spełniony warunek konieczny ~> A plus brak tożsamości pojęć „chmury” i „pada” (bo nie zawsze gdy są „chmury”, „pada”) wymusza implikację odwrotną CH|~>P w logice dodatniej (bo P).

Na mocy powyższego wnioskowania matematycznego możemy zapisać kompletną definicję operatora implikacji odwrotnej w spójnikach implikacyjnych.
[linki]

2.4 Równanie ogólne implikacji

Definicja operatora implikacji prostej |=>:
[linki]
Definicja implikacji prostej w równaniu algebry Kubusia:
p|=>q = ~p|~>~q
Bo kolumny 3 i 6 są tożsame.

Definicja operatora implikacji odwrotnej |~>:
[linki]
Definicja implikacji odwrotnej w równaniu algebry Kubusia:
p|~>q = ~p|=>~q
Bo kolumny 3 i 6 są tożsame.

Równanie ogólne implikacji:
p|=>q = ~p|~>~q ## p|~>q = ~p|=>~q
gdzie:
## - różne na mocy definicji
Dowód:
Kolumny wynikowe 3 i 6 w tabelach 1 i 2 są różne.

W celu obejrzenia szczegółów skorzystajmy z naszego przykładu.

Implikacja prosta P|=>CH:
A.
Jeśli jutro będzie padało to na pewno => będzie pochmurno
P=>CH =1
Definicja warunku wystarczającego => spełniona bo zawsze gdy pada, są chmury.
Dodatkowo pojęcia „pada” i „chmury” nie są tożsame, bo nie zawsze gdy pada, są chmury.

Te dwa fakty razem wymuszają definicję implikacji prostej P|=>CH w logice dodatniej (bo CH):
P|=>CH = (P=>CH)*~[P=CH]

Nasza tabela prawdy dla tego zdania wynikła z analizy:
[linki]

Implikacja odwrotna CH|~>P:
A.
Jeśli jutro będzie pochmurno to może ~> padać
CH~>P =1
Chmury są warunkiem koniecznym ~> dla opadów bo zabieram chmury wykluczając padanie
Dodatkowo pojęcia „chmury” i „pada” nie są tożsame, bo nie zawsze gdy są chmury, pada.

Te dwa warunki razem wymuszają definicję implikacji odwrotnej CH|~>P w logice dodatniej (bo P):
CH|~>P = (CH~>P)*~[CH=P]

Nasza tabela prawdy dla tego zdania wynikła z analizy:
[linki]

Porównując tabele 3IP i 3IO zapisujemy:
P|=>CH = ~P|~>~CH ## CH|~>P = ~CH|=>~P
gdzie:
## - różne na mocy definicji
Dowodem jest tu brak tożsamości kolumn wynikowych 9 i c w tabelach 3IP i 3IO, w odpowiedzi na identyczną matrycę zero-jedynkową ABCD1234.

Wniosek:
Znane ziemianom prawo kontrapozycji w implikacji jest fałszywe:
P|=>CH ## ~CH=>~P

Zapis dokładnie tego samego w zapisie formalnym:
p|=>q = ~p|~>~q ## p|~>q = ~p|=>~q
gdzie:
## - różne na mocy definicji

Zauważmy, że w miejsce znaku ## nie możemy podstawić znaku tożsamości [=] bo wówczas mamy szkolny błąd podstawienia rodem z I klasy szkoły podstawowej.

Dowód:
Zapis formalny:
p|=>q [=] p|~>q
Nasz przykład:
P|=>CH [=] CH|~>P
Po lewej stronie znaku [=] mamy:
p=P
q=CH
Natomiast po prawej stronie znaku [=] mamy:
p=CH
q=p
Gdyby tu była tożsamość to mamy szkolny błąd podstawienia, bowiem tożsamość [=] wymusza identyczne p i q po obu stronach znaku [=], co w tym przypadku jest gwałcone.
Poprawny matematycznie znak:
## - różne na mocy definicji
oczywiście niczemu nie szkodzi, matematycznie jest jak najbardziej poprawny.
cnd

2.5 Definicja równoważności <=>

Definicja równoważności:
Zbiór p jest podzbiorem => zbioru q i jest tożsamy ze zbiorem q, co matematycznie zapisujemy [p=q]
p<=>q = (p=>q)*[p=q]
Diagram równoważności <=> w zbiorach:


Symboliczna definicja implikacji równoważności w kwantyfikatorze małym ~~>:
[linki]
Symboliczna definicja równoważności <=> wraz z kodowaniem zero-jedynkowym:
[linki]
Doskonale widać, iż w definicjach symbolicznych wszystkie zmienne mamy sprowadzone do jedynek.
Zero-jedynkowa definicja operatora równoważności <=> to tabela ABCD129.
[linki]

2.5.1 Prawo Komandora

W świecie rzeczywistym badając dowolne zdanie pod kwantyfikatorem małym ~~> nie wiemy w skład jakiego operatora to zdanie wchodzi, musimy to dopiero udowodnić badając zdania pod kwantyfikatorem małym ~~> we wszystkich możliwych przeczeniach p i q.

Definicja kwantyfikatora małego ~~> w zbiorach:
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdanie pod kwantyfikatorem małym ~~> jest prawdziwe wtedy i tylko wtedy gdy istnieje wspólna cześć zbiorów p i q
Przykład:
A.
Jeśli zwierze jest psem to może ~~> mieć cztery łapy
P~~>4L = P*4L =1 - bo istnieje wspólna cześć zbiorów P i 4L, to pies

Definicja kwantyfikatora małego ~~> w zdarzeniach
Jeśli zajdzie p to może ~~> zajść q
p~~>q = p*q
Zdanie pod kwantyfikatorem małym ~~> jest prawdziwe, gdy możliwe jest jednoczesne zajście zdarzeń p i q
Przykład:
A.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1 - bo możliwe jest zdarzenie „pada” i „są chmury”

W obu definicjach badamy rzeczywiste relacje między p i q.
Wniosek:
W obu definicjach zmienne p i q mogą być w dowolnych przeczeniach, to bez znaczenia.

Prawo Czarnej Mamby:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>
Przykłady:
A1.
Jeśli jutro będzie padało to może ~~> być pochmurno
P~~>CH = P*CH =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „pada” i „są chmury”
A2.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = CH*P =1
Definicja kwantyfikatora małego ~~> spełniona bo możliwa jest sytuacja „są chmury” i „pada”

Prawo Komandora:
W świecie rzeczywistym to definicja symboliczna przez wszystkie możliwe przeczenia p i q w kwantyfikatorze małym ~~> (ABCD5678) wymusza tabelę zero-jedynkową operatora logicznego, nigdy odwrotnie!

Korzystając z prawa Kobry i prawa Komandora dowolne zdanie „Jeśli p to q” możemy zapisać w kwantyfikatorze małym po czym skorzystać z algorytmu Komandora.

Algorytm Komandora:
1.
Dowolne zdanie warunkowe „Jeśli p to q” przekształcamy do zdania pod kwantyfikatorem małym ~~>:
Jeśli zajdzie p to może ~~> zajść q
p~~>q
2.
Tworzymy serię zdań A, B, C i D uwzględniającą wszystkie możliwe przeczenia p i q
Wszystkich możliwych przypadków może być tylko i wyłącznie cztery.
[linki]
3.
Otrzymana kolumna wynikowa decyduje o tym, z jakim operatorem logicznym mamy do czynienia.

Zauważmy, że kolejność linii nie ma tu najmniejszego znaczenia jednak by od razu, bez porządkowania linii otrzymać założoną, definicyjną tabelę zero-jedynkową (Tabela 3R), musimy się trzymać kolejności przeczeń przedstawionej w Tabeli 5 (zgodność z tabelą 3R).

Przykład działania algorytmu Komandora:

Zbadaj w skład jakiego operatora logicznego wchodzi zdanie A.
A.
Jeśli trójkąt jest prostokątny to zachodzi suma kwadratów
TP=>SK

Zgodnie z algorytmem Komandora zamieniamy to zdanie na zdanie pod kwantyfikatorem małym ~~>:
A.
Jeśli trójkąt jest prostokątny to może ~~> zachodzić suma kwadratów
TP~~>SK = TP*SK =1
Wystarczy pokazać jeden trójkąt prostokątny w którym zachodzi suma kwadratów co kończy dowód
B.
Jeśli trójkąt jest prostokątny to może ~~> nie zachodzić suma kwadratów
TP~~>~SK = TP*~SK =0
Zbiory TP i ~SK są rozłączne
C.
Jeśli trójkąt nie jest prostokątny to może ~~> nie zachodzić suma kwadratów
~TP~~>~SK = ~TP*~SK =1
Wystarczy pokazać jeden trójkąt prostokątny w którym zachodzi suma kwadratów co kończy dowód
D.
Jeśli trójkąt nie jest prostokątny to może ~~> zachodzić suma kwadratów
~TP~~>SK = ~TP*SK =0
Zbiory ~TP i SK są rozłączne

Nanosimy powyższą analizę na tabelę zero-jedynkową.
[linki]
Doskonale widać, iż nasze zdanie A pod kwantyfikatorem małym wchodzi w skład operatora równoważności o definicji zero-jedynkowej w tabeli ABCD129.

2.5.2 Matematyczne wnioskowanie z prawa Komandora

Ogólne definicje spójników implikacyjnych:
p=>q - warunek wystarczający =>, wymuszam dowolne p i pojawia się q (kwantyfikator duży)
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q

Definicja kontrprzykładu w algebrze Kubusia i logice matematycznej ziemian!
Kontrprzykładem dla warunku wystarczającego A nazywamy zdanie B z zanegowanym następnikiem kodowane kwantyfikatorem małym ~~>:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
Zajście p jest warunkiem wystarczającym => dla zajścia q
Kontrprzykład dla zdania A to zdanie B.
B.
Jeśli zajdzie p to może ~~> zajść ~q
p~~>~q = p*~q
W kwantyfikatorze małym ~~> wystarczy pokazać jeden wspólny element zbiorów p i ~q czyniący to zdanie prawdziwym.

Rozstrzygnięcia:
Fałszywość kontrprzykładu B wymusza prawdziwość warunku wystarczającego A
Prawdziwość kontrprzykładu B wymusza fałszywość warunku wystarczającego A

Mamy tu do czynienia z równoważnością:
A: p=>q =1 <=> B: p~~>~q =0
B: p~~>~q =1 <=> A: p=>q =0

Zauważmy, iż powyższą definicję kontrprzykładu na 100% stosują w praktyce wszyscy ziemscy matematycy (mimo że jej nie znają!) z czego wynika, iż jedyna poprawna definicja kwantyfikatora małego ~~> to ta związana z definicją kontrprzykładu jak wyżej.

Prawo Czarnej Mamby:
Warunkiem koniecznym prawdziwości dowolnego zdania warunkowego „Jeśli p to q” jest jego prawdziwość pod kwantyfikatorem małym ~~>.

Prawo Kobry:
Kwantyfikator mały ~~> jest konieczny i wystarczający do wszelkich rozstrzygnięć w logice matematycznej.

Dowód:
[linki]
Zauważmy, że trójkąty prostokątne (TP) opisują wyłącznie linie AB56789.

Wnioskowanie z linii AB56789:
B.
Jeśli trójkąt jest prostokątny to może ~~> nie zachodzić suma kwadratów
TP~~>~SK = TP*~SK =0
Na mocy definicji kontrprzykładu fałszywość zdania B wymusza prawdziwość warunku wystarczającego A.
A.
Jeśli trójkąt jest prostokątny to na pewno => zachodzi suma kwadratów
TP=>SK =1
Potwierdzenie tego faktu:
Bycie trójkątem prostokątnym wystarcza => aby zachodziła w nim suma kwadratów
Zbiór trójkątów prostokątnych jest podzbiorem => trójkątów w których spełniona jest suma kwadratów.
Oczywistość, z powodu tożsamości zbiorów TP=SK

Trójkąty nie prostokątne (~TP) opisują wyłącznie linie CD56789.
Wnioskowanie z linii CD5678:
Fałszywość zdania D:
D.
Jeśli trójkąt nie jest prostokątny to może ~~> zachodzić suma kwadratów
~TP~~>SK = ~TP*SK =0
Na mocy definicji kontrprzykładu wymusza prawdziwość warunku wystarczającego => C.
C.
Jeśli trójkąt nie jest prostokątny to na pewno => nie zachodzi suma kwadratów
~TP=>~SK =1
Nie bycie trójkątem prostokątnym wystarcza => aby nie zachodziła w nim suma kwadratów
Zbiór trójkątów nie prostokątnych jest podzbiorem => zbioru trójkątów w których nie zachodzi suma kwadratów.
Oczywistość z powodu tożsamości zbiorów ~TP=~SK, którą to tożsamość wymusza tożsamość zbiorów TP=SK.

Na mocy powyższego wnioskowania matematycznego możemy zapisać kompletną definicję operatora równoważności <=> w spójnikach implikacyjnych.
[linki]
Stąd mamy definicję równoważności w warunkach wystarczających:
TP<=>SK = (TP=>SK)*(~TP=>~SK)

Ta sama definicja w zapisach formalnych:
p<=>q = (p=>q)*(~p=>~q)

2.5.3 Alternatywne definicje równoważności

Zacznijmy od operatora implikacji prostej |=>.

Definicja operatora implikacji prostej |=>:
Zbiór p jest podzbiorem => zbioru q i nie jest tożsamy ze zbiorem q, co matematycznie zapisujemy ~[p=q]
p|=>q = (p=>q)*~[p=q]

Diagram implikacji prostej |=> w zbiorach:


Definicja podzbioru:
p=>q
Zbiór p jest podzbiorem => zbioru q wtedy i tylko wtedy gdy każdy element zbioru p należy do zbioru q

Doskonale widać, że aby z implikacji prostej |=> przejść do równoważności musimy zlikwidować zbiór niebieski.

Możemy to uczynić na wiele sposobów.
1.
Aksjomatyczna definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
Równoważność p<=>q zachodzi gdy:
Zbiór p jest podzbiorem => zbioru q i zbiór ~p jest podzbiorem zbioru ~q
2.
Najpopularniejsza definicja równoważności, uwielbiana przez matematyków:
p<=>q = (p=>q)*(q=>p)
Równoważność p<=>q zachodzi gdy:
Zbiór p jest podzbiorem => zbioru q i zbiór q jest podzbiorem => zbioru p
3.
Równie popularna definicja równoważności:
p<=>q = (p=>q)*(p~>q)
Równoważność to jednoczesne zachodzenie warunku wystarczającego => i koniecznego ~> między dowolnymi dwoma punktami.
4.
Zbiór niebieski zlikwidujemy też w taki sposób:
p<=>q = (q=>p)*(~q=>~p)

Negując p i q w równaniu 1 otrzymujemy definicję równoważności w logice ujemnej (bo ~q)
5.
~p<=>~q = (~p=>~q)*(p=>q)
Prawe strony są tożsame, stąd mamy:
p<=>q = ~p<=>~q
Kolejną serię definicji równoważności można zapisać dla logiki ujemnej (bo ~q), oczywiście w praktyce jest to sztuka dla sztuki, nikomu nie potrzebna.

Prawa Kubusia obowiązują także w równoważności:
p=>q = ~p~>~q
p~>q = ~p=>~q
Podstawiając prawa Kubusia do definicji 1, 2, 3, 4 i 5 możemy otrzymać kolejne tożsame definicje równoważności, mało użyteczne w praktyce.

Podsumowanie:
Kluczowe dla matematyki są trzy podstawowe definicje 1, 2 i 3 które należy zapamiętać.

2.5.4 Prawa kontrapozycji w równoważności

Z równań 2 i 4 otrzymujemy I prawo kontrapozycji poprawne w równoważności:
p=>q = ~q=>~p
Z równań 1 i 2 otrzymujemy II prawo kontrapozycji poprawne w równoważności:
~p=>~q = q=>p dnia Pon 13:00, 28 Mar 2016, w całości zmieniany 24 razy


... dnia Czw 1:39, 12 Lis 2015, w całości zmieniany 1 raz

Definicja zdania warunkowego Jeśli p to q” wszystkich ludzi jest niesłychanie trywialna:
A.
Jeśli zajdzie przyczyna p to zajdzie skutek q

Dla każdego w miarę myślącego człowieka oczywistym jest, że to nie jest definicja.
Wyobraż sobie, że ktoś nie wie co to znaczy "jeśli... to..." czy po usłyszeniu Twojej "definicji" będzie wiedział?
.




Definicja zdania warunkowego Jeśli p to q” wszystkich ludzi jest niesłychanie trywialna:
A.
Jeśli zajdzie przyczyna p to zajdzie skutek q

Dla każdego w miarę myślącego człowieka oczywistym jest, że to nie jest definicja.
Wyobraż sobie, że ktoś nie wie co to znaczy "jeśli... to..." czy po usłyszeniu Twojej "definicji" będzie wiedział?

Definicja zdania warunkowego Jeśli p to q” wszystkich ludzi jest niesłychanie trywialna:
A.
Jeśli zajdzie przyczyna p to zajdzie skutek q

W logice matematycznej między p i q mogą być tylko i wyłącznie trzy spójniki implikacyjne.
I
p=>q - warunek wystarczający =>, wymuszam dowolne p i pojawia się q
II
p~>q - warunek konieczny ~>, zabieram wszystkie p i znika q
III
p~~>q - kwantyfikator mały ~~>, możliwe jest jednoczesne zajście p i q



Czy to jest zrozumiałe?

Wszystko jest jak najbardziej zrozumiałe.........

Algebra Kubusia dla Liceum ma być lekka, łatwa i przyjemna.
Brakuje pierwszej części (operatory jednoargumentowe, OR, AND) - na pewno nie będzie dłuższa od powyższej omawiającej spójniki implikacyjne.
Zostawiłem sobie dodatkowo trzecią dziurkę na obietnice i groźby.

Zauważ że w wersja dla LO jest niesłychanie banalna, zachowuje tu wyłącznie definicje zero-jedynkowe operatorów czyli:

Mam sztywny i niewzruszony szkielet zero-jedynkowy, a zmieniają mi się wyłącznie symbole opisujące ten szkielet - nie ma tu absolutnie żadnego, klasycznego rachunku zero-jedynkowego, gdzie wszystko „szaleje”, zarówno zera i jedynki jak i symbole opisujące te zera i jedynki.

Kopernik:
Zatrzymał słońce ruszył ziemię

Kubuś:
Zatrzymał szalejące (w rachunku zero-jedynkowym) zera i jedynki, ruszył symbole

Zauważ, że w równaniach algebry Boole’a masz wszystkie zmienne sprowadzone do jedynek, nie ma tu żadnego, idiotycznego, klasycznego rachunku zero-jedynkowego z jego szalejącymi zerami i jedynkami.

Klasyczny rachunek zero-jedynkowy jest matematycznie dobry, jego dewiza to:
Wszystkie chwyty dozwolone byleby uzyskać tabelę zero-jedynkową X - to jest dobre na poziomie sprzętu, to jest dobre bo umożliwiło stworzenie sprzętowej wersji komputera.

To jest kompletnie do DUPY, jeśli chodzi o logikę matematyczną.

Dlaczego?
… bo programowanie komputerów to FUNDAMENTANIE co innego niż sprzęt (bramki logiczne).
W języku asemblera, będącym programową interpretacją tych samych operatów logicznych, nie ma żadnych bramek (zer i jedynek) - tu one są TOTALNIE bezużyteczne.

Co więcej!
Mój wykładowca teorii bramek logicznych po semestrze wykładów na ich temat (minimalizacja, walka z wyścigami i hazardem) powiedział na ostatnim wykładzie.

Panowie, to czego uczyłem was przez cały semestr jest w praktyce bezużyteczne, bowiem technika bramek logicznych załamuje się na układach średniej skali integracji (liczniki, rejestry, multipleksery etc) że o programowaniu mikroprocesorów nie wspomnę.

Matematycy, grzebiąc się w logice zero-jedynkowej z uporem maniaka siedzą w epoce kamiennej która w technice trwała mniej niż mgnienie oka … logika zero-jedynkowa w technice definitywnie skończyła się z chwilą napisania pierwszego kompilatora języka asemblera, że o językach wysokiego poziomu nie wspomnę.

P.S.
Wersja algebry Kubusia dla LO działa na spójnikach logicznych zgodnych z naturalną logikę człowieka (nie na operatorach).
Piszę algebrę Kubusia dla matematyków, gdzie będzie dokładnie to samo co w wersji dla LO działające na operatorach logicznych.

Obie wersje są matematycznie tożsame.
Nie mam wątpliwości iż humaniści zrozumieją wersję dla LO.
Mam poważne obawy co do matematyków.
Dlaczego?
Bo TOTALNIE wszystkie definicje z zakresu logiki matematycznej mamy inne, czyli sprzeczne.

Mam nadzieję, że na ziemi znajdzie się paru matematyków będących w stanie wykopać w kosmos dosłownie wszystko, czego ich uczono w szkółce - to jest warunek konieczny dla zrozumienia algebry Kubusia. dnia Czw 22:32, 12 Lis 2015, w całości zmieniany 1 raz
W dalszych punktach też nie ma definicji.

W dalszych punktach też nie ma definicji.

Mamy zdanie:
A.
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L

Dobry matematyk np. Volrath czy Wuj Zbój bez problemu zaakceptuje tabele niżej, czyli analizę tego zdania według definicji implikacji prostej |=>.

Zacytuję ci wykładowcę logiki Volratha w tym temacie (rok 2008!):
http://www.sfinia.fora.pl/forum-kubusia,12/kubusiowa-szkola-logiki-na-zywo-dyskusja-z-volrathem,3591-50.html#69502

Z tego co rozumiem to tak samo rozumiemy implikację => i odwrotną implikację ~> tylko inaczej rozkładamy je na składowe. Przynajmniej jak chodzi o tabelkę, bo o innych "pozatabelkowych" różnicach napiszę dalej.

Ty rozkładasz na składowe:
P=>4L = 1 (pies)
P=>~4L = 0 (nie istnieje)
~P~>~4L =1 (mrówka)
~P~>4L =1 (słoń)

Ja rozkładam na składowe:
P AND 4L = 1 (pies)
P AND ~4L = 0 (nieistnieje)
~P AND ~4L =1 (mrówka)
~P AND 4L =1 (słoń)

Ta wytłuszczona tabelka Volratha to klasyka matematyki, znana każdemu dobremu matematykowi.
AND to oczywiście spójnik „i”(*) z naturalnej logiki człowieka.
[linki]
Doskonale widać, że Volrath szuka wspólnych części zbiorów P i 4L we wszystkich możliwych przeczeniach.

Wyznaczmy te zbiory:
Dziedzina:
ZWZ - zbiór wszystkich zwierząt
P = [pies] - zbiór jednoelementowy pies
~P = [ZWZ-pies] = [mrówka, słoń, wąż, kura ..]
4L=[pies, słoń, koń ..]
~4L=[ZWZ-4L] = [mrówka, wąż, kura ..]

Doskonale widać, że rzeczywistość, czyli tabela symboliczna decyduje tu o tabeli zero-jedynkowej, nigdy odwrotnie - tego wniosku w dyskusji z Volrathem oczywiście nie było, bo był to rok 2008!

[linki]

Z tabelki dla implikacji możemy dowiedzieć się, że zdanie, którego głównym spójnikiem jest jeśli... to może być fałszywe tylko w jednym wypadku, mianowicie, gdy jego poprzednik jest prawdziwy, natomiast następnik fałszywy.
Jako przykładem ilustrującym tabelkę dla implikacji posłużymy się zdaniem wypowiedzianym przez ojca do dziecka: Jeśli zdasz egzamin, to dostaniesz komputer. Gdy następnie dziecko A: nie zdaje egzaminu i komputera nie dostaje (pierwszy wiersz tabeli – poprzednik i następnik implikacji fałszywe) lub gdy D: zdaje egzamin i dostaje komputer (ostatni wiersz tabeli – poprzednik i następnik implikacji prawdziwe), to nie powinno być wątpliwości, że obietnica ojca okazała się prawdziwa. Gdy natomiast dziecko C: zdaje egzamin, a jednak komputera nie dostaje (trzeci wiersz tabeli – poprzednik implikacji prawdziwy, a następnik fałszywy), należy wówczas uznać, że ojciec skłamał składając swoją obietnicę.
Pewne kontrowersje może budzić uznanie za prawdziwego zdania w przypadku, gdy poprzednik implikacji jest fałszywy, natomiast następnik prawdziwy (drugi wiersz tabeli), czyli w naszym przykładzie, B: gdy dziecko wprawdzie nie zdało egzaminu, a mimo to dostało komputer. Zauważmy jednak, że wbrew pozorom ojciec nie łamie wcale w takim przypadku obietnicy dania komputera po zdanym egzaminie – nie powiedział on bowiem, że jest to jedyny przypadek, gdy dziecko może otrzymać komputer. Powiedzenie, że jeśli zdasz egzamin, to dostaniesz komputer, nie wyklucza wcale, że dziecko może również dostać komputer z innej okazji, na przykład na urodziny.
Powyższe wytłumaczenie drugiego wiersza tabelki dla implikacji może się wydawać nieco naciągane, a jest tak dlatego, że w języku potocznym często wypowiadamy zdania typu jeśli... to rozumiejąc przez nie wtedy i tylko wtedy (którego to zwrotu nikt raczej nie używa).

Zdanie dr. Wieczorka:
A.
Jeśli zdasz egzamin dostaniesz komputer
E=>K

Tabela zero-jedynkowa dr. Wieczorka:
[linki]
Zauważmy, że bez znaczenia jest czy dr. Wieczorek korzysta z definicji zero-jedynkowej, czy też z definicji symbolicznej.
Identycznie jest u Volratha.

Wynika z tego że definicja zero-jedynkowa implikacji prostej ABCD123 jest TOŻSAMA z definicją symboliczną ABCD456.

Mam pytanie:
Czy zero-jedynkowa tabela implikacji prostej ABCD123 jest także twoim zdaniem tożsama z tabelą symboliczną ABCD456? dnia Pią 9:29, 13 Lis 2015, w całości zmieniany 4 razy

Twierdzę, że nie znajdziesz choćby jednego twierdzenia matematycznego które by nie było zgodne z tymi definicjami
Z czym? Jakimi definicjami?
Czy chcesz powiedzić, że zdaniami "jeśli p to q" są wszystkie zdania mające postać "jeśli zajdzie przyczyna p to zajdzie skutek q", które dodatkowo spełniają I II III? Nie chce m się domyślać co masz na myśli. Podtrzymuję zdanie, że ten potok bełkotu nie jest definicją.

Twierdzę, że nie znajdziesz choćby jednego twierdzenia matematycznego które by nie było zgodne z tymi definicjami
Z czym? Jakimi definicjami?
Czy chcesz powiedzić, że zdaniami "jeśli p to q" są wszystkie zdania mające postać "jeśli zajdzie przyczyna p to zajdzie skutek q", które dodatkowo spełniają I II III? Nie chce m się domyślać co masz na myśli. Podtrzymuję zdanie, że ten potok bełkotu nie jest definicją.
Mała nieścisłość, powinno być:
Twierdzę, że nie znajdziesz choćby jednego twierdzenia matematycznego które by nie podlegało pod te definicje, czyli że nie znajdziesz kontrprzykładu obalającego te definicje na gruncie matematyki.

Chcę ci to po kolei wyjaśnić.
Szukam jakiegoś wspólnego punktu zaczepienia.
Dlatego zacząłem od przykładów Voratha i dr. Wieczorka.

W zapisach formalnych tożsame definicje implikacji prostej są następujące:
[linki]
Czy możesz odpowiedzieć na moje pytanie z postu wyżej?

Mam pytanie:
Czy zero-jedynkowa tabela implikacji prostej ABCD123 jest także twoim zdaniem tożsama z tabelą symboliczną ABCD456? dnia Pią 10:58, 13 Lis 2015, w całości zmieniany 2 razy
Bez definicji te tabele nie mają określonego znaczenia. Wersja 01 wygląda jak ta z KRZ, ale prawdopodobnie oznacza co innego, gdyby znaczyła to samo, to implikacja również byłaby taka sama. Zatem, bez zrozumiałej definicji nie jestem w stanie odpowiedzieć na żadne pytanie.

Bez definicji te tabele nie mają określonego znaczenia. Wersja 01 wygląda jak ta z KRZ, ale prawdopodobnie oznacza co innego, gdyby znaczyła to samo, to implikacja również byłaby taka sama. Zatem, bez zrozumiałej definicji nie jestem w stanie odpowiedzieć na żadne pytanie.

[linki]
Definicja implikacji prostej którą mamy wspólną to tabela zero-jedynkowa ABCD123.

Równanie logiczne opisujące kolumnę 3 jest następujące:
I. p|=>q = A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
I’. (p|=>q) =1 <=> A: (p*q)=1 lub C: (~p*~q) =1 lub D: (~p*q)=1

Równanie logiczne opisujące kolumnę 7 jest następujące:
II. ~(p|=>q) = p*~q
co matematycznie oznacza:
II’. ~(p|=>q) =1 <=> (p*~q) =1

Dla ostatniego korzystając z prawa Prosiaczka
(~p=1) = (p=0)
mamy zapis matematycznie tożsamy:
II’’. p|=>q =0 <=> p*~q=0

Czy zgadzasz się że równania I’ i II’’ to tożsamy opis matematyczny tabeli zero-jedynkowej ABCD123, którą mamy wspólną?

Dokładnie z tego opisu korzysta zarówno Volrath jak i dr. Wieczorek, co udowodniłem w poście wyżej.

Zauważ, że do tej pory żadne definicje typu:
p i q to zdania twierdzące (KRZiRP)

… nie są nam potrzebne!

Definicja implikacji prostej którą mamy wspólną to tabela zero-jedynkowa ABCD123.
Czy zgadzasz się że równania I’ i II’’ to tożsamy opis matematyczny tabeli zero-jedynkowej ABCD123, którą mamy wspólną?
I’ i II’’ - to nie są równania.

Definicja implikacji prostej którą mamy wspólną to tabela zero-jedynkowa ABCD123.
Czy zgadzasz się że równania I’ i II’’ to tożsamy opis matematyczny tabeli zero-jedynkowej ABCD123, którą mamy wspólną?
I’ i II’’ - to nie są równania.
Zauważ Fiklicie, że przed Kopernikiem cały świat mylił się sądząc, że ziemia jest płaska, mimo iż Egipcjanie umieli przewidywać zaćmienie słońca.

Ostatnie pytanie o I’ i II’’ wycofuję bo zrobiłem błąd, powinno być:
II’ p|=>q=0 <=> ~p+q=0

W algebrze Kubusia jeśli implikacja prosta p|=>q jest prawdziwa to implikacja gdzie zamienione są wyłącznie p i q (q|=>p) na 100% jest fałszywa.
bo argumenty w implikacji nie są przemienne.
p|=>q # q|=>p
gdzie:
# - rozne w znaczeniu
Jeśli jedna strona znaku # jest prawda to druga fałszem (odwrotnie nie zachodzi)

Spróbuję inaczej:
Operatory implikacyjne to:
|~~> - operator chaosu
|=> - operator implikacji prostej
|~> - operator implikacji odwrotnej
<=> - operator równoważności

Zero-jedynkowe definicje operatorów implikacyjnych:
[linki]
Na mocy definicji zachodzi:
p|=>q ## p|~>q ## p<=>q ## p|~~>q
gdzie:
## - różne na mocy definicji
Dowód:
Dla identycznej matrycy wymuszeń na wejściach p i q kolumny wynikowe 3,4,5,6 są różne

Operator chaosu opisany jest równaniem:
p|~~>q = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
p|~~>q=1 <=> A: (p*q)=1 lub B: (p*~q)=1 lub C: (~p*~q)=1 lub D: (~p*q) =1
Dowód:
Y = p*q + p*~q + ~p*~q + ~p*q
Y = p*(q+~q) + ~p*(~q+q) = p+~p =1
cnd
Mam nadzieję że z równaniem chaosu na 100% się zgadzasz.
Nanieśmy je na nasze definicje:
[linki]
Definicje operatorów logicznych w równaniach algebry Boole’a:

Operator chaosu w równaniu logicznym:
p|~~>q = A: p*q + B: p*~q + C: ~p*~q + D: ~p*q

Definicja implikacji prostej |=>:
Z implikacją prostą |=> mamy do czynienia gdy w równaniu operatora chaosu wyłącznie wyrażenie B jest twardym fałszem, zawsze fałszywe (=0)
Skoro jest twardym fałszem na mocy definicji to usuwamy je z powyższej sumy logicznej otrzymując definicję operatora implikacji prostej |=> w równaniu logicznym.
p|=>q = A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
(p|=>q)=1 <=> A: (p*q)=1 lub C: (~p*~q)=1 lub D: (~p*q) =1

Na mocy definicji implikacji prostej |=> wyrażenie B jest twardym fałszem, zapiszmy to:
B: p*~q =0

Stąd nasza tabela symboliczna implikacji prostej przybiera postać:
[linki]

Czy symboliczna tabela implikacji prostej |=> (ABCD789) jest teraz do zaakceptowania? dnia Sob 9:58, 14 Lis 2015, w całości zmieniany 7 razy

Bez definicji te tabele nie mają określonego znaczenia. Wersja 01 wygląda jak ta z KRZ, ale prawdopodobnie oznacza co innego, gdyby znaczyła to samo, to implikacja również byłaby taka sama. Zatem, bez zrozumiałej definicji nie jestem w stanie odpowiedzieć na żadne pytanie.

[linki]
Definicja implikacji prostej którą mamy wspólną to tabela zero-jedynkowa ABCD123.

Równanie logiczne opisujące kolumnę 3 jest następujące:
I. p|=>q = A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
I’. (p|=>q) =1 <=> A: (p*q)=1 lub C: (~p*~q) =1 lub D: (~p*q)=1

Równanie logiczne opisujące kolumnę 7 jest następujące:
II. ~(p|=>q) = p*~q
co matematycznie oznacza:
II’. ~(p|=>q) =1 <=> (p*~q) =1

Dla ostatniego korzystając z prawa Prosiaczka
(~p=1) = (p=0)
mamy zapis matematycznie tożsamy:
II’’. p|=>q =0 <=> p*~q=0

Czy zgadzasz się że równania I’ i II’’ to tożsamy opis matematyczny tabeli zero-jedynkowej ABCD123, którą mamy wspólną?

Dokładnie z tego opisu korzysta zarówno Volrath jak i dr. Wieczorek, co udowodniłem w poście wyżej.

Zauważ, że do tej pory żadne definicje typu:
p i q to zdania twierdzące (KRZiRP)

… nie są nam potrzebne!
W tym poście zrobiłem błąd.
Powinno być:
II’ p|=>q=0 <=> ~p+q=0
Powyższe równanie opisuje zera w kolumnie 7 w technice sprowadzania wszystkich zmiennych do ZERA. To jest logika tożsama z logiką człowieka, ale do niej przeciwna, nazwijmy ją, logiką ZERO.

Uwaga!
Człowiek nie potrafi myśleć logicznie w logice ZERO, co nie oznacza, że nie można z niej korzystać przy układaniu równań algebry Boole’a dla dowolnej tabeli zero-jedynkowej.
[linki]
Mamy nasze równanie II’
p|=>q =0 < => ~p+q =0
To równanie opisuje wynikowe ZERA w kolumnie 7 w logice ZERO.

Dowód:
Technika tworzenie równań logicznych w logice ZERO:
W dowolnej tabeli zero-jedynkowej, w logice ZERO, wszystkie zmienne sprowadzamy do ZERA, w wierszach stosujemy spójnik „lub”(+), natomiast w kolumnach spójnik „i”(*).
W powstałym równaniu logicznym mamy wszystkie zmienne sprowadzone do ZERA, które wykopujemy w kosmos otrzymując równanie koniunkcyjno-alternatywne opisujące tabelę zero-jedynkową.

Opiszmy kolumnę 7 w logice ZERO!
Oznaczmy dla uproszczenia zapisów:
Y = (p|=>q)
Z tabeli ABCD127 odczytujemy:
~Y=0 <=> p=1 lub q=1 i C: p=0 lub q=0 i D: p=0 lub q=1
Korzystając z prawa Prosiaczka:
(p=1) = (~p=0)
sprowadzamy wszystkie zmienne do ZERA:
~Y=0 <=> ~p=0 lub ~q=0 i C: p=0 lub q=0 i D: p=0 lub ~q=0
W logice ZERO wszystkie zera wykopujemy w kosmos otrzymując równanie koniunkcyjno-alternatywne opisujące badaną tabelę zero-jedynkową.
~Y = A: (~p+~q) * C: (p+q) * D: (p+~q)
co matematycznie oznacza:
~Y=0 <=> ~p=0 lub ~q=0 i C: p=0 lub q=0 i D: p=0 lub ~q=0

Dowód tożsamości równania ułożonego w logice ZERO z równaniem ułożonym w logice człowieka!

Przechodzimy do logiki przeciwnej poprzez negację zmiennych i wymianę spójników
Stąd mamy tożsame równanie alternatywno-koniunkcyjne!
Y = A: p*q + C: ~p*~q + D: ~p*q

Doskonale widać, że to równanie opisuje JEDYNKI w kolumnie wynikowej 3!

Wniosek:
Wszystkie wynikowe zera w kolumnie 7 są matematycznie tożsame z JEDYNKAMI w kolumnie 3.

Dowodem są tu absolutnie genialne prawa Prosiaczka!
(p=1) = (~p=0)
(p=0) = (~p=1)

Przykład:
A3: Y=1 = A7: ~Y=0
B3: Y=0 = B7: ~Y=1

Nie widzę żadnych przeszkód, by uczniowie I klasy LO poznali bezpośrednią technikę tworzenia równań logicznych koniunkcyjno-alternatywnych bezpośrednio z tabeli zero-jedynkowej.
Algorytm jest tu absolutnie trywialny, czego dowód wyżej.

Panowie ziemscy matematycy:
Ile jeszcze wody w wiśle musi upłynąć, byście zaakceptowali algebrę Kubusia, byście zaakceptowali nieznane wam prawa Kubusia i prawa Prosiaczka, technikę tworzenia równań logicznych w logice ZERO (tu wszystkie zmienne sprowadzamy do ZERA) oraz technikę tworzenia równań w logice człowieka (tu wszystkie zmienne sprowadzamy do JEDYNEK)

Technika człowieka:
W tabeli ABCD123 opisujemy dokładnie to co widzimy w naturalnej logice człowieka:
Podstawmy dla uproszczenia:
Y = p|=>q
Jedziemy:
Y=1 <=> A: p=1 i q=1 lub C: p=0 i q=0 lub D: p=0 i q=1

Korzystając z prawa Prosiaczka:
(p=0) = (~p=1)
Otrzymujemy!
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

W naturalnej logice człowieka JEDYNKI są domyślne, możemy je zatem wykopać w kosmos nic nie tracąc na jednoznaczności.
W ten sposób otrzymujemy równanie alternatywno-koniunkcyjne dla dowolnej tabeli zero-jedynkowej.
Y = A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

Wnioski!
1.
Równanie alternatywno-koniunkcyjne, gdzie wszystkie zmienne sprowadzamy do JEDYNEK jest zgodne z naturalną logiką matematyczną każdego człowieka, od 5-cio latka po prof. matematyki.
2.
Równanie koniunkcyjno-alternatywne, gdzie wszystkie zmienne sprowadzamy do ZERA jest niezgodne z naturalną logiką matematyczną człowieka, żaden człowiek nie potrafi myśleć logicznie w logice ZERO.

Historyczny wniosek!

Prawo Tygryska:
W dowolnym równaniu logicznym uzyskamy zgodność z naturalną logiką człowieka wtedy i tylko wtedy gdy przekształcimy je do równania alternatywno-koniunkcyjnego.

Prawa Prosiaczka:
(p=1) = (~p=0)
(~p=1) = (p=0)

Prawa Kubusia:
p=>q = ~p~>~q
p~>q = ~p=>~q

.. no to mamy trójkę matematycznych przyjaciół w komplecie: Kubuś, Prosiaczek i Tygrysek.

Czyż algebra Kubusia nie jest absolutnie prosta i genialna?

Jej autorem nie jest ziemianin Rafał3006.
Autorem algebry Kubusia jest:
Kubuś - Bóg (przez duże B) naszego Wszechświata, który go stworzył.
Rafał3006 to tylko medium, które nawiązało kontakt z Kubusiem dnia Sob 10:17, 14 Lis 2015, w całości zmieniany 6 razy

Definicja implikacji prostej |=>:
Z implikacją prostą |=> mamy do czynienia gdy w równaniu operatora chaosu wyłącznie wyrażenie B jest twardym fałszem, zawsze fałszywe (=0)
Skoro...

W algebrze Kubusia jeśli implikacja prosta p|=>q jest prawdziwa to implikacja gdzie zamienione są wyłącznie p i q (q|=>p) na 100% jest fałszywa.

Czy symboliczna tabela implikacji prostej |=> (ABCD789) jest teraz do zaakceptowania?

Wyjdź od jednej podstawowej definicji. Jeśli będzie się opierała na tabeli 01 to oprócz tabeli musisz napisać co to w ogóle jest ta implikacja prosta, i co oznaczają wartości w tabeli.
Np. w KRZ można ująć to tak, że implikacja jest działaniem (jest osobna definicja działania) którego wartości dla poszczególnych argumentów (odwzorowanie z {T,F}x{T,F} w {T,F} ) określone jest tabelką.
Dzięki Fiklicie!
Sam widzisz że dyskusja jest mi potrzebna, jak człowiekowi woda, bez niej algebra Kubusia nigdy by nie powstała.
Ostatni owoc to:
Prawo Tygryska!
.. patrz wyżej.

Prawo Tygryska:
W dowolnym równaniu logicznym uzyskamy zgodność z naturalną logiką człowieka wtedy i tylko wtedy gdy przekształcimy je do równania alternatywno-koniunkcyjnego.

Prawo Tygryska rozwiązuje definitywnie wszelkie znane mi problemy w sposób trywialny, a nie w sposób skomplikowany jaki do tej pory stosowałem.

Weźmy prawo De Morgana:
W.
Jutro pójdę do kina i do teatru
Y=K*T
co matematycznie oznacza:
Y=1 <=> K=1 i T=1

Tata, a kiedy skłamiesz?
Przejście do logiki ujemnej (bo ~Y) poprzez negację zmiennych i wymianę spójników
~Y=~K+~T

Tata:
U.
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K) lub nie pójdę do teatru (~T)
~Y=~K+~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 lub ~T=1

Związek logiki dodatniej i ujemnej:
Y = ~(~Y)
stąd mamy:
Y = K*T = ~(~K+~T)
co matematycznie oznacza:
~Y=1 <=> K=1 i T=1
~Y=1 <=> ~(~K=1+~T=1)
Ostatnie równanie jest matematycznie błędne.
Jak sobie z tym radziłem do tej pory?
Y = K*T = ~(~K+~T)
Punktem odniesienia jest tu logika dodatnia (bo Y).
Sygnały odniesienia to K i T.
Zatem poprawne równanie powinno być zapisane tak:
Y = K*T = ~[~(K)+~(T)]
Dopiero teraz możemy wartościować to równanie względem sygnałów odniesienia K i T.

Prawo Tygryska sprowadza ten problem do absolutnego banału!
Likwidujemy po prosu zaprzeczenie alternatywy!
Y = K*T = K*T
Tu jest mały z tym problem, ale wieloczłonowego równania koniunkcyjno-alternatywnego człowiek nie jest w stanie pojąć.

Dowód:
Korzystając z definicji spójnika „lub”(+):
Y=p+q = (p*q) + (p*~q) + (~p*q)
zdanie U przekształcamy do postaci:
~Y = (~K*~T) + (~K*T) + (K*~T)
co matematycznie oznacza:
~Y=1 <=> ~K*~T=1 lub ~K*T=1 lub K*~T=1
To równanie to absolutnie naturalna logika człowieka od 5-cio latka po prof. matematyki

Przejście do logiki dodatniej (bo Y) poprzez negację zmiennych i wymianę spójników:
W1.
Y = (K+T)*(K+~T)*(~K+T)
W1.
Matematycznie zachodzi tu tożsamość:
W = W1
Y = K*T = (K+T)*[K+~(T)]*[~(K)+T]
Sygnały odniesienia w powyższym równaniu w logice dodatniej (bo Y) to K, T - stąd nawiasy przy zanegowanych ~(T) i ~(K).

Drugi człon to absolutny HORROR dla każdego człowieka, który da się sprowadzić to trywiału:
Y=K*T
co matematycznie oznacza:
Y=1 <=> K=1 i T=1

P.S.
Mam teraz dużo pracy w firmie.
Na twój ostatni post odpowiem później. dnia Sob 23:57, 14 Lis 2015, w całości zmieniany 3 razy
Nie interesuje mnie skakanie z tematu na temat, nie interesuje to co międlisz w ostatnim wpisie.
Nie mam zaufania do Twoich "równań", gdyż nie raz pokazałeś, że zasady ustalasz tam wg własnego widzimisie.
Skoro chcesz mówić o równaniach, to ustalmy pewne zasady,
1. moim staniem równaniem można nazwać wyrażenie o strukturze L = P gdzie L i P są wyrażeniami.
2. Natomiast symbol (relacja) "=" ma takie właściwości:
1) dla dowolnego x: x=x
2) dla dowolnych x i y, jeśli x=y to y=x
3) dla dowolny x, y, z, jeśli x=y oraz y=z to x=z
3. Symbol "=" będzie używany tylko w powyższym znaczeniu.


Nie interesuje mnie skakanie z tematu na temat, nie interesuje to co międlisz w ostatnim wpisie.
Nie mam zaufania do Twoich "równań", gdyż nie raz pokazałeś, że zasady ustalasz tam wg własnego widzimisie.
Skoro chcesz mówić o równaniach, to ustalmy pewne zasady,
1. moim staniem równaniem można nazwać wyrażenie o strukturze L = P gdzie L i P są wyrażeniami.
2. Natomiast symbol (relacja) "=" ma takie właściwości:
1) dla dowolnego x: x=x
2) dla dowolnych x i y, jeśli x=y to y=x
3) dla dowolny x, y, z, jeśli x=y oraz y=z to x=z
3. Symbol "=" będzie używany tylko w powyższym znaczeniu.

Ok. Kolejna próba:
Definicja implikacji prostej |=>:
Z implikacją prostą |=> mamy do czynienia gdy w równaniu operatora chaosu wyłącznie wyrażenie B jest twardym fałszem, zawsze fałszywe (=0)
Skoro...

"Skoro" wskazuje że dalej są wnioski z definicji, więc je pomijam.
I znowu, definicja która nic a nic nie mówi. Wyobraź sobie że nic nie wiesz o AK. Przeczytaj powyższą definicję i zastanów czy jesteś w stanie ją zrozumieć.

Fiklicie,
Uczeń pierwszej klasy LO musi znać technikę tworzenia równań z dowolnej tabeli zero-jedynkowej
Ta technika nie potrzebuje totalnie niczego, w szczególności zbędne są tu definicje z KRZiRP: zdanie prawdziwe, zdanie fałszywe
Z punktu widzenia AK ta definicja rodem z KRZiRP jest zbędna i potwornie beznadziejna.

W AK potrzebna jest tu wyłącznie tabela zero-jedynkowa operatorów logicznych:

Operatory implikacyjne to:
|~~> - operator chaosu
|=> - operator implikacji prostej
|~> - operator implikacji odwrotnej
<=> - operator równoważności

Zero-jedynkowe definicje operatorów implikacyjnych:
[linki]
Na mocy definicji zachodzi:
p|=>q ## p|~>q ## p<=>q ## p|~~>q
gdzie:
## - różne na mocy definicji
Dowód:
Dla identycznej matrycy wymuszeń na wejściach p i q kolumny wynikowe 3,4,5,6 są różne

Nie możesz zaprzeczyć, iż powyższe definicje nie są definicjami - oczywiście są!
[linki]
Ok. Kolejna próba:
Definicja implikacji prostej |=>:
Z implikacją prostą |=> mamy do czynienia gdy w równaniu operatora chaosu wyłącznie wyrażenie B jest twardym fałszem, zawsze fałszywe (=0)
Skoro...

"Skoro" wskazuje że dalej są wnioski z definicji, więc je pomijam.
I znowu, definicja która nic a nic nie mówi. Wyobraź sobie że nic nie wiesz o AK. Przeczytaj powyższą definicję i zastanów czy jesteś w stanie ją zrozumieć.



Czy symboliczna tabela implikacji prostej |=> (ABCD789) jest teraz do zaakceptowania?

Wyjdź od jednej podstawowej definicji. Jeśli będzie się opierała na tabeli 01 to oprócz tabeli musisz napisać co to w ogóle jest ta implikacja prosta, i co oznaczają wartości w tabeli.
Np. w KRZ można ująć to tak, że implikacja jest działaniem (jest osobna definicja działania) którego wartości dla poszczególnych argumentów (odwzorowanie z {T,F}x{T,F} w {T,F} ) określone jest tabelką.
Właśnie to zrobiłem wyżej!
Wyszedłem od definicji operatora chaosu |~~> którą mamy wspólną.
[linki]
Dzięki znajomości techniki tworzenia równań logicznych z dowolnej tabeli zero-jedynkowej zapisuję definicję symboliczną operatora chaosu |~~>:
Y = A: p*q +B: p*~q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
Y=1 <=> A: (p*q)=1 lub B: (p*~q)=1 lub C: (~p*~q)=1 lub D: (~p*q)=1

KONIEC

Pytanie podsumowujące:
Co wspólnego ma technika tworzenia równań logicznych z debilnymi definicjami KRZiRP:
zdanie prawdziwe, zdanie fałszywe

Oczywiście NIC!
Totalnie NIC!

Czy to jest zrozumiałe? dnia Sob 14:07, 14 Lis 2015, w całości zmieniany 5 razy

Fiklicie, obaj się zgadzamy że zero-jedynkowa definicja operatora chaosu to tabela ABCD789.
Nie, nie zgadzamy się. Przed chwilą o tym pisałem.

Fiklicie, obaj się zgadzamy że zero-jedynkowa definicja operatora chaosu to tabela ABCD789.
Nie, nie zgadzamy się. Przed chwilą o tym pisałem.
Aksjomatyka algebry Kubusia to tabele zero-jedynkowe operatorów logicznych, z których wynika logika pod którą podlega cały nasz Wszechświat, żywy i martwy - algebra Kubusia.

Sam widzisz, że nasze systemy logiczne różnią się TOTALNIE.
Nie jesteśmy w stanie uzgodnić niczego, nawet oczywistego dla mnie faktu iż:

Tabela zero-jedynkowa wszystkich możliwych operatorów logicznych to nic innego jak matematyczne DEFINICJE tych operatorów.

Wynika z tego iż jeśli kiedykolwiek ziemianie załapią algebrę Kubusia to będzie to holokaust logiki ziemian totalny.

Niczego podobnego w matematyce wcześniej nie było ...

To tylko przez twoją nieumiejętność tłumaczenia. Przedstawiasz jakąś tabelkę i co z tego? Co znaczą te =1 i =0 ? Co to w ogóle jest to p|=>q? Wyrażenie algebraiczne?

To tylko przez twoją nieumiejętność tłumaczenia. Przedstawiasz jakąś tabelkę i co z tego? Co znaczą te =1 i =0 ? Co to w ogóle jest to p|=>q? Wyrażenie algebraiczne?

Czy to jest zrozumiałe?

Wszystko jest jak najbardziej zrozumiałe.........

Najnowszą AK dla Liceum zacząłem od końca, od omówienia operatorów implikacyjnych (|=>, |~>, |~~>, <=>).
Cofamy się teraz do tyłu!
Pora na operator AND(|*) i OR(|+)

Z braku czasu, pilna robota w firmie, na razie sygnalizuję tylko absolutną banalność tego problemu!

Kompletna teoria spójników „i”(*) i „lub”(+)
z naturalnej logiki matematycznej człowieka

Operator AND!

[linki]
Definicja operatora AND(|*) w układzie równań logicznych, w spójnikach „i”(*) i „lub”(+):
W: Y=p*q - logika dodatnia (bo Y)
Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
U: ~Y=~p+~q - logika ujemna (bo ~Y)
Związek logiki dodatniej z logiką ujemną:
Y=~(~Y)
Podstawiając W i U mamy prawa De Morgana w logice dodatniej (bo Y):
Y = p*q = ~(~p+~q)
Związek logiki ujemnej z logiką dodatnią:
~Y = ~(Y)
Podstawiając W i U mamy prawo De Morgana w logice ujemnej (bo ~Y):
~Y = ~p+~q = ~(p*q)

Operator OR

[linki]
Definicja operatora OR(|+) w układzie równań logicznych, w spójnikach „i”(*) i „lub”:
W: Y=p+q - logika dodatnia (bo Y)
Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
U: ~Y=~p*~q - logika ujemna (bo ~Y)
Związek logiki dodatniej z logiką ujemną:
Y=~(~Y)
Podstawiając W i U mamy prawa De Morgana w logice dodatniej (bo Y):
Y = p+q = ~(~p*~q)
Związek logiki ujemnej z logiką dodatnią:
~Y = ~(Y)
Podstawiając W i U mamy prawo De Morgana w logice ujemnej (bo ~Y):
~Y = ~p*~q = ~(p+q)

Podsumowanie:
1.
Doskonale widać, że w logice matematycznej nie ma żadnego operatora NAND i NOR - to głupoty wymyślone przez ludzików.
2.
W jedynej poprawnej logice matematycznej w naszym Wszechświecie istnieją wyłącznie funkcje logiczne w logice dodatniej (bo Y) i logice ujemnej (bo ~Y).
3.
Operatory logiczne w rozumieniu dzisiejszych matematyków są w logice matematycznej człowieka kompletnie nie używane … bo ich po prostu nie da się używać w naturalnym języku mówionym człowieka. Dotyczy to absolutnie wszystkich operatorów logicznych.

Dowód:
Niemożliwe jest wypowiedzenie pojedyńczego zdania, zawierającego jednocześnie funkcję w logice dodatniej (bo Y) i ujemnej (bo ~Y).
Patrz teoria spójników „i”(*) i „lub”(+) wyłożona wyżej. dnia Sob 22:29, 14 Lis 2015, w całości zmieniany 6 razy

To tylko przez twoją nieumiejętność tłumaczenia. Przedstawiasz jakąś tabelkę i co z tego? Co znaczą te =1 i =0 ? Co to w ogóle jest to p|=>q? Wyrażenie algebraiczne?

Algebra Kubusia traktuje wszystkie operatory logiczne w identyczny sposób (spójnikowo), nie ma więc znaczenia na jakim operatorze ci to wyjaśnię.

Zrobię to na przykładzie operatora OR(|+).

Operator OR!

[linki]
Definicja operatora OR(|+) w układzie równań logicznych, w spójnikach „i”(*) i „lub”:
W: Y=p+q - logika dodatnia (bo Y)
Prawo przejścia do logiki przeciwnej:
Negujemy zmienne i wymieniamy spójniki na przeciwne
U: ~Y=~p*~q - logika ujemna (bo ~Y)
Związek logiki dodatniej z logiką ujemną:
Y=~(~Y)
Podstawiając W i U mamy prawa De Morgana w logice dodatniej (bo Y):
Y = p+q = ~(~p*~q)
Związek logiki ujemnej z logiką dodatnią:
~Y = ~(Y)
Podstawiając W i U mamy prawo De Morgana w logice ujemnej (bo ~Y):
~Y = ~p*~q = ~(p+q)

Rozważmy przykład:
W.
Jutro pójdziemy do kina lub do teatru
Y=K+T
co matematycznie oznacza:
Y=1 <=> K=1 lub T=1

Definicja spójnika „lub”(+):
p+q = p*q + p*~q+~p*q
stąd:
Y = K*T + K*~T + ~K*T
co matematycznie oznacza:
Y=1 <=> (K*T)=1 lub (K*~T)=1 lub (~K*T)=1
czyli:
Dotrzymam słowa (Y) wtedy i tylko wtedy gdy:
A: K*T=1*1 =1 - pójdziemy do kina (K=1) i do teatru (T=1)
lub
B: K*~T = 1*1 =1 - jutro pójdziemy do kina (K=1) i nie pójdziemy do teatru (~T=1)
lub
C: ~K*T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i pójdziemy do teatru (T=1)

Tata, kiedy skłamiesz?
Przejście do logiki ujemnej poprzez negację zmiennych i wymianę spójników
~Y=~K*~T
stąd:
U.
Skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdziemy do kina (~K) i nie pójdziemy do teatru (~T)
~Y=~K*~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 i ~T=1
Skłamię (~Y) wtedy i tylko wtedy gdy:
D: ~K*~T =1*1 =1 - jutro nie pójdziemy do kina (~K=1) i nie pójdziemy do teatru (~T=1)

Nanieśmy zdania W i U na tabelę symboliczną:
[linki]
Doskonale tu widać, że spójniki logiczne nie są operatorami!

Przejdziemy do świata operatorów jeśli uzupełnimy te spójniki do pełnych operatorów.
Zróbmy to!
[linki]
To tylko przez twoją nieumiejętność tłumaczenia. Przedstawiasz jakąś tabelkę i co z tego? Co znaczą te =1 i =0 ? Co to w ogóle jest to p|=>q? Wyrażenie algebraiczne?

Operator OR(|+) to układ równań logicznych:
W: Y=K+T
co matematycznie oznacza:
Y=1 <=> K=1 lub T=1

U: ~Y=~K*~T
co matematycznie oznacza:
~Y=1 <=> ~K=1 i ~T=1

Zauważmy, że jeśli wyrażamy dowolną tabelę zero-jedynkową w spójnikach „lub”(+) i „i”(*) to w wyniku mamy wyłącznie JEDYNKI.
W tabeli zero-jedynkowej i symbolicznej nie ma w tym przypadku ani jednego, wynikowego zera!

Dowód:
[linki] dnia Nie 11:49, 15 Lis 2015, w całości zmieniany 8 razy

Algebra Kubusia traktuje wszystkie operatory logiczne w identyczny sposób (spójnikowo), nie ma więc znaczenia na jakim operatorze ci to wyjaśnię.

Zrobię to na przykładzie operatora OR(|+).

Właśnie o tym mówię, nie potrafisz tłumaczyć, lub celowo tego nie robisz.
Po co zmieniasz przykład? Na pewno to nie ułatwia, a może zaciemnić.
Pytam o to co znaczy "=1" i "=0" a ty mi o logikach ujemnych, spójnikach, operatorach, algorytmach, o wszytkim tylko nie o tym o co pytam. Żeby sensownie przeanalizować algorytm, najpierw muszę znać semantykę danych wejściowych. Ty opowiadasz o tym danych, jak je przetwarzać, że są takie same jak w KRZ itp. ale nie piszesz nic co one tak naprawdę znaczą.

Boisz się, że ktoś zrozumie o czym tak naprawdę jest AK?

Algebra Kubusia traktuje wszystkie operatory logiczne w identyczny sposób (spójnikowo), nie ma więc znaczenia na jakim operatorze ci to wyjaśnię.

Zrobię to na przykładzie operatora OR(|+).

Właśnie o tym mówię, nie potrafisz tłumaczyć, lub celowo tego nie robisz.
Po co zmieniasz przykład? Na pewno to nie ułatwia, a może zaciemnić.
Pytam o to co znaczy "=1" i "=0" a ty mi o logikach ujemnych, spójnikach, operatorach, algorytmach, o wszytkim tylko nie o tym o co pytam. Żeby sensownie przeanalizować algorytm, najpierw muszę znać semantykę danych wejściowych. Ty opowiadasz o tym danych, jak je przetwarzać, że są takie same jak w KRZ itp. ale nie piszesz nic co one tak naprawdę znaczą.

Boisz się, że ktoś zrozumie o czym tak naprawdę jest AK?
To tylko przez twoją nieumiejętność tłumaczenia. Przedstawiasz jakąś tabelkę i co z tego? Co znaczą te =1 i =0 ? Co to w ogóle jest to p|=>q? Wyrażenie algebraiczne?
[linki]
Definicja kwantyfikatora małego:
p~~>q = p*q
Zbiory:
Istnieje wspólny element zbiorów p i q
Zdarzenia:
Możliwe jest jednoczesne zajście zdarzeń p i q

Klasyczna, zero-jedynkowa definicja implikacji prostej to tabela ABCD125.
Wejściowa tabela zero-jedynkowa ABCD1234 wymusza istnienie zbiorów/zdarzeń niepustych:
p, q, ~p, ~q

Te zbiory/zdarzenia niepuste wymusza też definicja rozpoznawalności pojęcie:
Pojęcie p jest rozpoznawalne wtedy i tylko wtedy gdy rozpoznawalne jest pojęcie ~p

W definicjach symbolicznych po stronie wejścia mamy wszystkie zmienne sprowadzone do jedynek.
Dowód:
Porównajmy tabelę ABCD1234 z tabelą ABCDabcd (ABCDefgh) - doskonale to widać.

Wartości logiczne po stronie wyjścia p|=>q poprzedzone są znakiem = (np. =1, =0)

Wartość logiczna wyjścia cząstkowego (dla konkretnej linii) to prawdziwość zdania pod kwantyfikatorem małym (wtedy =1), albo fałszywość zdania pod kwantyfikatorem małym (wtedy =0).

Co to jest p|=>q?
To symboliczna funkcja logiczna opisująca tabelę symboliczną, kolumna ABCD5.

Dla kolumny ABCD5 zapisujemy:
p|=>q =1 <=> A: (p*q)=1 lub C: (~p*~q)=1 lub D: (~p*q)=1
Jedynki w logice są domyślne, możemy je wykopać w kosmos otrzymując równanie algebry Kubusia w spójnikach „lub”(+) i „i”(*):
W: p|=>q= A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
p|=>q =1 <=> A: (p*q)=1 lub C: (~p*~q)=1 lub D: (~p*q)=1
Wystarczy że którykolwiek warunek po prawej stronie jest spełniony i już ustawi:
p|=>q =1

Dla kolumny ABCD5 możemy także zapisać:
p|=>q =0 <=> B: p*~q =1
Prawo Prosiaczka:
(p=0) = (~p=1)
Po zastosowaniu dla lewej strony mamy:
~(p|=>q) =1 <=> B: (p*~q)=1
Domyślne jedynki możemy opuścić:
U: ~(p|=>q) = p*~q

To wszystko co ma do powiedzenia AK na temat zer i jedynek w tabeli zero-jedynkowej, na najniższym poziomie, na poziomie kwantyfikatora małego ~~>.

Tożsamy układ równań jest taki:
W: p|=>q = A: p~~>q + C: ~p~~>~q + D: ~p~~>q
U: ~(p|=>q) = B: p~~>~q dnia Pon 1:01, 16 Lis 2015, w całości zmieniany 1 raz
No i znowu, czemu piszesz o tabelach symbolicznych jak pytam o 01?
Co oznacza 1 w A12 a co =1 w A5 w tabelce z twojego ostatniego wpisu?
... dnia Pon 9:14, 16 Lis 2015, w całości zmieniany 2 razy

No i znowu, czemu piszesz o tabelach symbolicznych jak pytam o 01?
Co oznacza 1 w A12 a co =1 w A5 w tabelce z twojego ostatniego wpisu?

[linki]
Tabela zero-jedynkowa ziemian operatora implikacji prostej to ABCD125 z powyższej tabeli:
[linki]
Masz teraz zadanie czysto matematyczne, na poziomie ucznia I klasy LO w 100-milowym lesie.
Ułóż równanie logiczne opisujące powyższą tabelę.
W 100 milowym lesie robi się to tak.
Krok1:
spisujemy w naturalnej logice człowieka dokładnie to co widzimy w tabeli
Y=0 <=> p=1 i q=0
Krok 2:
Prawo Prosiaczka:
(p=0) = (~p=1)
Korzystając z prawa Prosiaczka sprowadzamy wszystkie zmienne do jedynek:
~Y=1 <=> p=1 i ~q=1
Krok 3:
Jedynki są w logice matematycznej domyślne, wykopujemy w kosmos otrzymując równanie logiczne opisujące wyłącznie linię B, bo dla tej linii ułożyliśmy równanie.
U.
~Y = B: p*~q
co matematycznie oznacza:
~Y=1 <=> B: (p=1 i ~q=1)

Jak wygląda równanie logiczne opisujące pozostałe linie tabeli zero-jedynkowej ACD123?
Negujemy stronami równanie U!
~(~Y) = ~(p*~q)
stąd mamy:
Y = ~p+q
Odpowiedź:
Równanie logiczne opisujące linie ACD123 to równanie:
W.
Y = ~p+q
co matematycznie oznacza:
Y=1 <=> ~p=1 lub q=1

Równanie tożsame do W możemy ułożyć opisując wynikowe jedynki (=1) w kolumnie 5.
Krok 1:
Spisujemy w naturalnej logice człowieka dokładnie to co widzimy w tabeli ABCD125 dla wynikowych jedynek (=1).
Y=1 <=> A: p=1 i q=1 lub C: p=0 i q=0 lub D: p=0 i q=1
Krok 2:
Prawo Prosiaczka:
(p=0) = (~p=1)
Na mocy prawa Prosiaczka sprowadzamy wszystkie zmienne do jedynek.
Y=1 <=> A: p=1 i q=1 lub C:~p=1 i ~q=1 lub D: ~p=1 i q=1
Krok 3:
Jedynki są w logice domyślne, możemy je opuścić otrzymując równanie algebry Boole’a opisujące tą tabelę.
Y = A: p*q + C: ~p*~q + D: ~p*q
co matematycznie oznacza:
Y=1 <=> A: p=1 i q=1 lub C:~p=1 i ~q=1 lub D: ~p=1 i q=1

Doskonale widać, że w równaniu alternatywno-koniunkcyjnym (logika człowieka) nie masz żadnej tabeli zero-jedynkowej, bo nie ma tu ANI JEDNEGO zera!

Ja wiem że razi cie tu slogan sprowadzenie zmiennych do jedynek.

Po pierwsze:
To wynika bezpośrednio z pełnej tabeli zero-jedynkowej operatora implikacji prostej:
[linki]
No i znowu, czemu piszesz o tabelach symbolicznych jak pytam o 01?
Co oznacza 1 w A12 a co =1 w A5 w tabelce z twojego ostatniego wpisu?

Właściwa tabela zero-jedynkowa dla zdania:
A.
Jeśli zajdzie p to na pewno => zajdzie q
p=>q
p musi być warunkiem wystarczającym => dla q
Dodatkowo pojęcia p i q nie mogą być tożsame
Te dwa warunki razem definiują tabelę implikacji prostej niżej:
p|=>q = (p=>q)*~[p=q]
[linki]
1 w A12 oznacza prawdziwość A1 i A2 względem nagłówka tabeli, tu p i q
1 w A5 oznacza prawdziwość względem nagłówka tabeli, tu Y
Zapis tożsamy powyższej tabeli w naturalnej logice człowieka jest taki:
Tabela 2
A: (p=1) i (q=1) = (Y=1)
B: (p=1) i (q=0) = (Y=0)
C: (p=0) i (q=0) = (Y=1)
D: (p=0) i (q=1) = (Y=1)
W tabeli 2 pozbywamy się punktu odniesienia, tu go nie ma, co oznacza iż w rzeczywistości może być dowolny.
Na mocy prawa Prosiaczka wszystkie zmienne w tabeli 2 możemy sprowadzić do jedynek:
Tabela 3
A: (p=1) i (q=1) = (Y=1)
B: (p=1) i (~q=1) = (~Y=1)
C: (~p=1) i (~q=1) = (Y=1)
D: (~p=1) i (q=1) = (Y=1)
Jeśli ktoś zapyta:
Kiedy Y=1?
To masz gotową odpowiedź:
Y=1 <=> A: p=1 i q=1 lub C: ~p=1 i ~q=1 lub D: ~p=1 i q=1

Mamy naszą tabelę zero-jedynkową:
[linki]
Tu punktem odniesienia sa sygnały:
p i q
zatem względem tych sygnałów
A: p=1 i q=1

W powyższej tabeli możemy zmienić punkt odniesienia na dowolny np. taki:
[linki]
W tym przypadku wartość logiczna punktu A1 jest ZERO!
… ale jest to wartość logiczna względem nagłówka tabeli którym w tej kolumnie jest sygnał ~p
stąd mamy:
A: ~p=0 i q=1
Zapis tożsamy na mocy prawa Prosiaczka:
A: p=1 i q=1

Widzimy, że dla trzech zmiennych p, q, Y możliwych punktów odniesienia w powyższej tabeli jest 8.
Dla n zmiennych możliwych punktów odniesienia jest 2^n

Jeśli na mocy prawa Prosiaczka sprowadzimy wszystkie zmienne do jedynek, to mamy JEDEN punkt odniesienia niezależnie od ilości zmiennych. W tym punkcie odniesienia, w dowolnym równaniu alternatywno-koniunkcyjnym (naturalna logika człowieka - patrz technika tworzenia takiego równania wyżej) wszystkie zmienne sprowadzone są do jedynek, ilość zmiennych jest tu nieistotna!

Zauważ, że nie istnieje zdanie warunkowe w którym byś znał z góry wartości logiczne p i q.
A.
Jeśli jutro będzie padało to na pewno będzie pochmurno
P=>CH
To co wyżej to piękne zdanie warunkowe „Jeśli p to q”

X.
Jeśli śfinie latają w kosmosie to 2+2=4
Zdanie X to kosmiczna głupota, logika „matematyczna” ludzików mająca ZERO wspólnego ze zdaniem warunkowym humanistów i 5-cio latków „Jeśli p to q”
Powtórzę:
Zdanie X ma ZERO wspólnego ze zdaniem warunkowym „Jeśli p to q”, w algebrze Kubusia to FAŁSZ, bo p jest bez związku z q.

Podsumowanie generalne, sedno całego tego postu jest takie:
Czy akceptujesz w matematyce prawa Prosiaczka?
(p=1) = (~p=0)
(~p=1) = (p=0)
które możemy stosować wybiórczo do dowolnej zmiennej binarnej.

Przykład:
A.
Jutro pójdę do kina
K=1
Prawdą jest (=1) że jutro pójdę do kina (K)

Prawo Prosiaczka:
(K=1) = (~K=0)

Zdanie tożsame na mocy prawa prosiaczka brzmi:
Fałszem jest (=0) że jutro nie pójdę do kina (~K)
~K=0

Prawo Prosiaczka doskonale zna w praktyce każdy 5-cio latek!

Pytanie fundamentalne:
Dlaczego ziemscy matematycy go nie znają?
… oto jest pytanie godne Hamleta.

Podsumowanie generalne 2:
Załóżmy że mamy zdanie:
A.
Jeśli jutro będzie pochmurno to może ~~> padać
CH~~>P = P*CH =1 - bo możliwe jest zdarzenie „pada” i „są chmury”

Operator logiczny w spójnikach „lub”(+) i „i”(*) to analiza wszystkich możliwych przeczeń zapisanych kwantyfikatorem małym ~~>
stąd mamy:
[linki]
Podsumowanie:
Zdanie A wchodzi w skład operatora implikacji odwrotnej ABCD125 (CH|~>P) jeśli za punkt odniesienia przyjmiemy sygnały CH i P.
Zdanie A wchodzi w skład operatora implikacji prostej ABCD345 (~CH|=>~P) jeśli za punkt odniesienia przyjmiemy sygnały ~CH i ~P

Matematycznie zachodzi:
CH|~>P = ~CH|=>~P

Bo kolumna wynikowa jest identyczna.
W zapisie symbolicznym dostaniemy tu serię identycznych zdań A, B, C i D jak wyżej.

Zauważmy że jeśli za punkt odniesienia przyjmiemy zdanie D czyli:
D: ~CH=1 i P=1
to otrzymamy:
[linki]
Brak tożsamości kolumny ABCD5 w tabelach 1 i 2 jest dowodem iż matematycznie zachodzi:
CH~~>P =1 ## ~CH~~>P =0
## - rożne na mocy definicji
Zauważmy, że otrzymana tu tabela zero-jedynkowa ABCD125 nie ma nic wspólnego z jakimkolwiek operatorem implikacyjnym bo A: 1 1 =>0
Zauważmy, że w logice zdanie warunkowe „Jeśli p to q” fałszywe np.
Jeśli jutro nie będzie pochmurno to może ~~> padać
~CH~~>P = ~CH*P =1*1 =0 - sytuacja niemożliwa
Też musi wchodzić w skład jakiegoś operatora logicznego - tu w skład operatora implikacji odwrotnej CH|~>P, czego dowodem jest tabela symboliczna 2.

Przyjmijmy za punkt odniesienia zdanie B z tabeli 1:
B: CH=1, ~P=1
[linki]
Brak tożsamości kolumn wynikowych ABCD5 w tabelach 1 i 3 jest dowodem iż matematycznie zachodzi:
CH~~>P =1 ## CH~~>~P =1
## - różne na mocy definicji
Tu również tabela ABCD125 nie ma nic wspólnego z jakimkolwiek operatorem implikacyjnym bo C: 0 0 =>0
Zauważmy, że w logice zdanie prawdziwe pod kwantyfikatorem małym:
CH~~>~ P = CH*~P =1
też musi wchodzić w skład jakiegoś operatora logicznego, tu operatora implikacji odwrotnej CH|~>P, czego dowodem jest tabela symboliczna 3

W klasycznym rachunku zero-jedynkowym szaleją zarówno tabele zero-jedynkowe jak i opisy tych tabel.

Kwintesencję algebry Kubusia widać tu jak na dłoni:
W algebrze Kubusia szablony zero-jedynkowe na wejściach p i q w tabelach wyżej mamy stałe, NIEZMIENNE - patrz wszystkie tabele ABCD1234 wyżej.
Zmieniają się wyłącznie nagłówki na wejściach p i q które mogą być w dowolnych przeczeniach.

Kopernik:
Zatrzymał słońce ruszył ziemię

Kubuś:
Zatrzymał zera i jedynki na wejściach p i q, ruszył symbole
Dowód:
Patrz wszystkie tabele wejściowe ABCD1234 wyżej

Kubuś:
Zlikwidował wszelkie zera na wejściach p i q.
Dowód:
W równaniach alternatywno-koniunkcyjnych (logika człowieka) na wejściach p i q mamy wszystkie zmienne sprowadzone do jedynek - patrz wszystkie tabele symboliczne wyżej. dnia Pon 10:31, 16 Lis 2015, w całości zmieniany 8 razy
To znasz tą semantykę zer i jedynek w tabeli? Zapytałem o ich znaczenie, a tym i piszesz tylko jak je przetwarzać.