ďťż

Algebra Kubusia - nowa teoria zbiorów - beta 2.0

Baza znalezionych fraz

polsk riksdag

… wszystko co chcecie, żeby ludzie wam czynili, wy też im podobnie czyńcie …
Ewangelia Mateusza 7:12

Algebra Kubusia - nowa teoria zbiorów
Autorzy: Kubuś i Przyjaciele

Kim jest Kubuś?
Kubuś to wirtualny Internetowy Miś, teleportowany do ziemskiego Internetu przez zaprzyjaźnioną cywilizację z innego Wszechświata.

Podręcznik w oryginale:
Algebra Kubusia
Najważniejsze definicje:
Kompendium algebry Kubusia
Podręcznik w wersji skróconej zawierający wyłącznie część I:
Algebra Kubusia - nowa teoria zbiorów

Algebra Kubusia to końcowy efekt siedmioletniej dyskusji na forach sfinia.fora.pl, ateista.pl, yrizona.freeforums.org i matematyka.pl. Dziękuję wszystkim, którzy dyskutując z Kubusiem przyczynili się do jej powstania. Szczególne podziękowania dla: Rafała3006(medium), Wuja Zbója, Voratha, Macjana, Quebaba, Windziarza, Fizyka, Sogorsa, Fiklita i Yorgina.

Wstęp.

Fundamentem algebry Kubusia jest nowa teoria zbiorów. Algebra Kubusia w rozszerzonej wersji zawiera dodatkowo techniczną algebrę Boole’a oraz algebrę Kubusia w służbie lingwistyki.

Algebra Kubusia to matematyka pod którą podlega cały nasz Wszechświat, żywy i martwy, człowiek nie jest tu wyjątkiem. Z punktu widzenia logiki teoria zbiorów to zaledwie dwa zbiory p i q we wszystkich możliwych wzajemnych położeniach z których wynikają zero-jedynkowe definicje znanych człowiekowi operatorów logicznych.

Aksjomat to założenie które przyjmuje się bez dowodu.

W świecie techniki inżynierowie przyjmują za aksjomat zero-jedynkowe definicje operatorów logicznych plus banalny rachunek zero-jedynkowy z którego wynikają wszelkie prawa logiczne.
Takie podejście jest poprawne jeśli interesuje nas fizyczne zbudowanie komputera (hardware), jednak sprzęt bez oprogramowania (software) to tylko bezużyteczna kupa złomu. Software (naturalna logika człowieka) to zupełnie co innego niż hardware, mimo że w obu przypadkach fundamentem jest ta sama, symboliczna algebra Boole’a (algebra Kubusia).

Jest oczywistym, że jeśli istnieje matematyka pod którą podlega człowiek, to musi być ona absolutnie banalna, na poziomie 5-cio latka. Ta maksyma przyświecała Kubusiowi od samego początku walki o rozszyfrowanie matematycznych podstaw naturalnej logiki człowieka.

W nowej teorii zbiorów znaczenie zer i jedynek wewnątrz operatorów logicznych jest inne niż w aktualnej logice matematycznej. Algebra Kubusia jest totalnie odwrotna w stosunku do logiki matematycznej Ziemian. Z tego powodu praktycznie niemożliwa jest dyskusja na rzeczowe argumenty. Warunkiem koniecznym zrozumienia nowej teorii zbiorów i algebry Kubusia jest odłożenie na półkę wszelkiej wiedzy z logiki matematycznej uczonej w ziemskich szkołach i zaczęcie wszystkiego od zera.

Nowa teoria zbiorów jest banalna bo tu nigdy nie wychodzimy poza trzy podstawowe operacje na zbiorach, alternatywę zbiorów, koniunkcję zbiorów i różnicę zbiorów. Naturalna logika człowieka to tyko i wyłącznie to, absolutnie nic więcej.

Techniczna algebra Boole’a to już zupełnie inna bajka, tu trzeba czuć dwuelementową algebrę Boole’a a to jest bardzo trudne dla matematyka przyzwyczajonego do funkcji liniowych, kwadratowych etc. Oczywistym szokiem dla przeciętnego matematyka będzie zabranie mu tych nieskończonych zbiorów i pozostawienie zaledwie dwu cyferek 0 i 1. Na szczęście techniczna algebra Boole’a to w obecnej chwili czasy epoki kamiennej, nie jest potrzebna nikomu, ani matematykom, ani inżynierom. Ci ostatni w dniu dzisiejszym operują wyłącznie w technice mikroprocesorowej gdzie nie ma śladu fizycznych bramek logicznych. Tak więc techniczną algebrę Boole’a można traktować jako ciekawostkę. Polecam ją czytelnikom których pasjonuje matematyka, mam nadzieję, że napisana jest prostym i łatwym do zrozumienia językiem.

Najśmieszniejsze sytuacje w historii 7-letniej walki o rozszyfrowanie matematycznych fundamentów naturalnej logiki człowieka to te, w których bardzo dobrzy ziemscy matematycy próbowali udowadniać Kubusiowi iż się myli, powołując się na analogię do klasycznych funkcji operujących na nieskończonych zbiorach liczb. Problem w tym, że tu nie ma żadnej analogii.
Matematyka klasyczna to fundamentalnie co innego niż algebra Boole’a. Fundamentalnie inna jest wizualizacja funkcji logicznych. W matematyce klasycznej mamy układ kartezjański który w algebrze Boole’a jest najzwyklejszym idiotyzmem. Wykresy funkcji logicznych w algebrze Boole’a to fundamentalnie co innego, to zmiany zmiennych binarnych w funkcji czasu. Przykładowe, piękne wykresy czasowe mamy w tym linku. Aby zrozumieć symboliczną algebrę Boole’a (algebrę Kubusia) trzeba szukać analogii do naturalnej logiki 5-cio Latków, a nie do matematyki klasycznej, co Kubuś przez te lata czynił.

Jakie jest największe marzenie Kubusia?
Mam nadzieję że kiedyś będzie to podstawowy podręcznik logiki matematycznej w I klasach LO.
Nie może być tak jak to jest w dniu dzisiejszym, iż niewinnym dzieciom pierze się mózgi z naturalnej logiki człowieka zdaniami prawdziwymi typu.

Matematyka dla liceum/Logika:
Jeśli pies ma osiem łap, to Księżyc krąży wokół Ziemi
Zdanie prawdziwe w dzisiejszej „matematyce”.

Pisząc ten podręcznik starałem się aby zupełnie nowa wiedza, jaką jest algebra Kubusia, została podana po równi pochyłej od najprostszych pojęć poczynając. Proszę o sygnały w którym miejscu są ewentualne schody, będziemy je wspólnie likwidować.

Spis treści:

Część I
Nowa teoria zbiorów

1.0 Notacja

2.0 Aksjomatyka algebry Kubusia
2.1 Techniczna algebra Boole’a
2.2 Definicje operatorów logicznych w zbiorach

3.0 Nowa teoria zbiorów
3.1 Podstawowe operacje na zbiorach
3.2 Prawo podwójnego przeczenia
3.3 Zdanie w algebrze Kubusia
3.4 Czym różni się zdanie twierdzące od zdania warunkowego?

4.0 Operatory jednoargumentowe
4.1 Abstrakcyjna budowa operatora logicznego
4.2 Operator transmisji w zbiorach
4.3 Operator negacji w zbiorach

5.0 Operatory implikacji i równoważności
5.1 Operator chaosu w zbiorach
5.2 Implikacja prosta w zbiorach
5.3 Najważniejsze prawa algebry Kubusia
5.3.1 Prawa Prosiaczka
5.3.2 Geneza praw Prosiaczka
5.3.3 Zastosowanie praw Prosiaczka
5.3.4 Czym różni się tożsamość od równoważności?
5.3.5 Budowa tabeli prawdy w algebrze Kubusia
5.4 Implikacja odwrotna w zbiorach
5.5 Równoważność w zbiorach
5.6 Prawa kontrapozycji w implikacji na gruncie NTZ
5.7 Alternatywne definicje implikacji i równoważności
5.8 Równania Fiklita
5.9 Matematyczna historia powstania naszego Wszechświata

6.0 Operatory OR i AND
6.1 Operator OR w zbiorach
6.2 Operator AND w zbiorach
6.3 Prawo przejścia do logiki przeciwnej
6.4 Operator XOR
6.5 Nietypowa równoważność
6.6 Nietypowa implikacja prosta
6.7 Samodzielny warunek wystarczający
6.8 Pseudo-operator Słonia
6.9 Obietnice i groźby

Cześć II
Techniczna algebra Boole’a

Część III
Algebra Kubusia w służbie lingwistyki

Część IV
Kompendium algebry Kubusia

Część V
Definicje czworokątów w algebrze Kubusia

Część I
Nowa teoria zbiorów

1.0 Notacja

Zera i jedynki w nowej teorii zbiorów (NTZ) oznaczają:
1 - zbiór niepusty (zbiór istnieje)
0 - zbiór pusty (zbiór nie istnieje)

~ - symbol negacji

= - tożsamość
Zbiory:
p=q - zbiór p jest tożsamy ze zbiorem q
Rachunek zero-jedynkowy:
Kolumny wynikowe w tabeli zero-jedynkowej są tożsame (identyczne)
p<=>q = ~p<=>~q

# - różne
Zbiory:
p#q - zbiór p jest różny od zbioru q
Rachunek zero-jedynkowy:
Kolumny wynikowe w tabeli zero-jedynkowej są różne
p=>q = ~p~>~q =1 # p~>q = ~p=>~q =0
Po obu stronach znaku # musimy mieć to samo p i q

## - różne na mocy definicji
Implikacja prosta ## Implikacja odwrotna
p=>q = ~p~>~q =1 ## p~>q = ~p=>~q =1
Po obu stronach znaku ## możemy mieć dowolne p i q
W przypadku implikacji zdanie po drugiej stronie znaku ## będzie prawdziwe wtedy i tylko wtedy gdy zamienimy miejscami p i q.

Spójniki logiczne w algebrze Kubusia:
Operatory OR i AND:
* - spójnik „i” w mowie potocznej
+ - spójnik „lub” w mowie potocznej
Operatory implikacji i równoważności:
=> - warunek wystarczający, spójnik „na pewno” w całym obszarze matematyki
~> - warunek konieczny, spójnik „może” w implikacji
[~>] - wirtualny warunek konieczny w równoważności, nie jest to spójnik „może”
~~> - naturalny spójnik „może” wystarczy pokazać jeden przypadek prawdziwy
<=> - wtedy i tylko wtedy
$ - spójnik „albo” z naturalnej logiki człowieka

Matematyczny fundament nowej teorii zbiorów:

Definicja znaczka ~~> (naturalny spójnik „może”)
~~> - zbiór na podstawie wektora ~~> musi mieć co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>

Definicja znaczka => (warunek wystarczający):
=> - zbiór na podstawie wektora => musi zawierać się w zbiorze wskazywanym przez strzałkę wektora =>

Definicja znaczka ~> (warunek konieczny):
~> - zbiór na podstawie wektora ~> musi zawierać w sobie zbiór wskazywany przez strzałkę wektora ~>

2.0 Aksjomatyka algebry Kubusia

Aksjomat to założenie które przyjmuje się bez dowodu.

Aksjomatyka algebry Kubusia to zero-jedynkowe definicje operatorów logicznych plus banalne zasady rachunku zero-jedynkowego. Symboliczna algebra Boole’a (algebra Kubusia) to zero-jedynkowe definicje operatorów logicznych zapisane w równaniach algebry Boole’a (nowa teoria zbiorów).

Zmienna binarna:
Zmienna binarna to zmienna mogąca w osi czasu przyjmować wyłącznie dwie wartości 0 albo 1
Przykłady: p, q, r

~ - symbol przeczenia NIE
Fundament algebry Kubusia:
1=~0
0=~1

Prawa Prosiaczka:
I. p=0 <=> ~p=1
II. p=1 <=> ~p=0
stąd:
Jeśli p=0 to ~p=1
Jeśli ~p=0 to p=1
<=> - wtedy i tylko wtedy
Prawa Prosiaczka umożliwiają:
A.
Utworzenie równania algebry Boole’a z dowolnej tabeli zero-jedynkowej
B.
Utworzenie tabeli zero-jedynkowej z dowolnego równania algebry Boole’a

Prawo podwójnego przeczenia:
p=~(~p)

Przykład:
A: Jestem uczciwy
A: U
B: Jestem nieuczciwy
B: ~U
C: Nieprawdą jest ~(…) że jestem nieuczciwy
C: ~(~U) = A: U
Zdania A i C znaczą dokładnie to samo
cnd

Funkcja logiczna:
Funkcja logiczna (Y - wyjście cyfrowe w układzie logicznym) to funkcja n-zmiennych binarnych połączonych spójnikami „i”(*) albo „lub”(+) mogąca w osi czasu przyjmować wyłącznie 0 albo 1 w zależności od aktualnej wartości zmiennych binarnych.
Y - funkcja logiczna
Przykład:
Y=p*q+p*~q+~p*q

Aksjomatyczne, zero-jedynkowe definicje operatorów logicznych to pełna teoria zbiorów w algebrze Kubusia, uwzględniająca wszystkie możliwe przypadki wzajemnego położenia zbiorów.

Znaczenie 0 i 1 w nowej teorii zbiorów:
1 - zbiór niepusty (zbiór istnieje)
0 - zbiór pusty (zbiór nie istnieje)

W tabelach zero-jedynkowych operatorów logicznych po stronie wejścia p i q mamy:
1 - zmienna z nagłówka tabeli niezanegowana
0 - zmienna z nagłówka tabeli zanegowana

Korzystając z prawa Prosiaczka:
Jeśli p=0 to ~p=1
Jeśli q=0 to ~q=1
sprowadzamy zmienne p i q do jedynek, czyli do teorii zbiorów.
[linki]
gdzie:
* - iloczyn logiczny zbiorów p i q (wspólne elementy bez powtórzeń)

Po takim manewrze na wejściach p i q mamy iloczyny logiczne konkretnych zbiorów, które generują wynikowe 0 i 1 o znaczeniu:
1 - istnieje część wspólna zbiorów na wejściach p i q, co wymusza zbiór wynikowy niepusty (=1), zdanie prawdziwe
0 - zbiory na wejściach p i q są rozłączne, co wymusza zbiór wynikowy pusty (=0), zdanie fałszywe

Definicja zdania w algebrze Kubusia:
Zdanie to funkcja logiczna zbiorów wejściowych

Przykład zdania:
Jeśli zwierzę jest psem to może ~~> nie mieć czterech łap
P~~>~4L = P*~4L =1*1 =0
P=1 - zbiór psów
~4L=1 - zbiór zwierząt nie mających 4 łap (kura, wąż …)
Oba zbiory istnieją (P=1 i ~4L=1) ale są rozłączne, co wymusza zbiór wynikowy pusty (=0), zdanie fałszywe.

Maszynowa definicja operatora logicznego (algebra Boole’a):
Operator logiczny to odpowiedź układu na wszystkie możliwe kombinacje 0 i 1 na wejściach p i q

Symboliczna definicja operatora logicznego (algebra Kubusia):
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q

Prawo Sowy:
W świecie totalnie zdeterminowanym, gdzie znamy z góry wartości logiczne p i q, dowolny operator logiczny ulega redukcji do operatora AND.
Prawo Sowy wynika bezpośrednio z symbolicznej definicji operatora logicznego.

Definicje operatorów logicznych zapisane są dla świata totalnie niezdeterminowanego, gdzie nie znamy z góry wartości logicznej ani p, ani q. Wynika to bezpośrednio z symbolicznej definicji operatora i prawa Sowy.

Definicja logiki w algebrze Kubusia = definicja algebry Kubusia:
Logika to przewidywanie przyszłości lub rozwiązywanie nieznanego np. nieznanej przeszłości.
Wbrew pozorom przeszłość może być nieznana np. poszukiwanie mordercy

Matematyka:
Logika to formułowanie i udowadnianie twierdzeń matematycznych

2.1 Techniczna algebra Boole’a

Fundamentem technicznej algebry Boole’a jest rachunek zero-jedynkowy gdzie cyfry 0 i 1 nie mają żadnego odniesienia do naturalnej logiki człowieka typu:
1 - prawda
0 - fałsz
… to po prostu cyfry 0 i 1 i kropka.

W technicznej algebrze Boole’a chodzi wyłącznie o fizyczną realizację zero-jedynkowej definicji operatora X na wszelkie możliwe sposoby oraz o minimalizację złożonych funkcji logicznych.

W technicznej algebrze Boole’a dysponując dowolnym z operatorów:
NAND, NOR, => albo ~>
można zbudować tabele zero-jedynkowe wszystkich pozostałych operatorów.
Oczywiście zupełnie nie o to chodzi w naturalnej logice człowieka, algebrze Kubusia.

Zauważmy, że w technicznej algebrze Boole’a cyfry 0 i 1 nie mają żadnego znaczenia, natomiast w zasygnalizowanej wyżej, nowej teorii zbiorów (algebrze Kubusia) cyfry 0 i 1 mają ściśle określone znaczenie.

Znaczenie 0 i 1 w nowej teorii zbiorów:
1 - zbiór niepusty (zbiór istnieje)
0 - zbiór pusty (zbiór nie istnieje)

W przełożeniu na świat komputerów techniczna algebra Boole’a to hardware (sprzęt), natomiast nowa teoria zbiorów to software (program).
Oczywiście hardware to zupełnie co innego niż software, mimo iż fundamentem w obu przypadkach jest ta sama, symboliczna algebra Boole’a.

2.2 Definicje operatorów logicznych w zbiorach

Nowa teoria zbiorów to definicje wszystkich możliwych operatorów logicznych w zbiorach, z których najważniejsze to:

OR:
Zbiory p i q muszą mieć część wspólną i żaden z nich nie może zawierać się w drugim.
Y=p+q
~Y=~p*~q
Przykład:
p=[1,2,3,4], q=[3,4,5,6]

AND:
Zbiory p i q muszą mieć część wspólną i żaden z nich nie może zawierać się w drugim.
Y=p*q
~Y=~p+~q
Przykład:
p=[1,2,3,4], q=[3,4,5,6]

Implikacja prosta:
p=>q = ~p~>~q
p=>q
Zbiór p musi zawierać się w zbiorze q i nie być tożsamym ze zbiorem q
p#q
Przykład:
p=[1,2], q=[1,2,3,4,5,6]

Implikacja odwrotna:
p~>q = ~p=>~q
p~>q
Zbiór p musi zawierać w sobie zbiór q i nie być tożsamym ze zbiorem q
p#q
Przykład:
p=[1,2,3,4,5,6], q=[1,2]

Równoważność:
p<=>q = (p=>q)*(~p=>~q)
p=>q
Zbiór p musi zawierać się w zbiorze q i być tożsamy ze zbiorem q
p=q
Tożsamość zbiorów p=q wymusza tożsamość zbiorów ~p=~q
Przykład:
p=[1,2,3,4], q=[1,2,3,4]

XOR
Y = p*~q + ~p*q
Zbiór p musi być rozłączny ze zbiorem q
p=[1,2], q=[3,4]

Algebra Kubusia to matematyczny opis naszego Wszechświata, w tym nieznanego. Dla potrzeb tej algebry wystarczą nam definicje prostych operacji na zbiorach.

3.0 Nowa teoria zbiorów

Definicja uniwersum:
Uniwersum to wszelkie możliwe pojęcia zrozumiałe dla człowieka

Uniwersum to najszersza dziedzina w której człowiek może się poruszać.

Definicja zbioru:
Zbiór to dowolnie wybrany zbiór, uniwersum lub podzbiór uniwersum.

Człowiek może tworzyć dowolne podzbiory uniwersum np. zbiór zwierząt, zbiór gwiazd, zbiór spójników logicznych, zbiór polityków, zbiór czworokątów, zbiór pojęć abstrakcyjnych … itp.

Przy tej definicji uniwersum można uznać za zbiór wszystkich zbiorów. Oczywiście uniwersum jest dynamiczne, żaden człowiek nie jest w stanie wyjść poza uniwersum. W praktyce rzadko odwołujemy się do uniwersum ale to pojecie jest dla logiki bezcenne.

W logice można ustawić punkt odniesienia na dowolnym zbiorze.
Taki zbiór nosi nazwę dziedziny.

Definicja dziedziny:
Dziedzina to zbiór główny w obrębie którego działamy, poza ramy którego nie wychodzimy

Definicja podzbioru:
Wszelkie zbiory tworzone w wybranej dziedzinie są podzbiorami w obrębie tej dziedziny

Definicja zbioru niepustego:
Zbiór niepusty to zbiór zawierający przynajmniej jeden element

W logice zbiór niepusty utożsamiany jest z logiczną jedynką

Definicja zbioru pustego:
Zbiór pusty to zbiór który nie zawiera żadnych elementów

W logice zbiór pusty jest utożsamiany jest z logicznym zerem

W nowej teorii zbiorów (NTZ) zbiory mają wartość logiczną.

Zera i jedynki w NTZ oznaczają:
1 - zbiór niepusty (zbiór istnieje)
0 - zbiór pusty (zbiór nie istnieje)

Na mocy definicji możliwe są wyłącznie dwie wartości logiczne zbiorów 0 i 1.

Elementy zbioru wypisujemy w nawiasach kwadratowych:
p=[1,2,3,4]
Wartość logiczną zbioru zapisujemy bez nawiasów:
p=[1,2,3,4]=1

Zbiór pusty nie zawiera żadnych elementów:
p=[] =0 - zbiór pusty

Tożsamość zbiorów:
Zbiory tożsame to zbiory identyczne

Przykład:
Jeśli zwierzę jest psem to ma cztery łapy
P=>4L
Poprzednik precyzyjnie wyznacza tu dziedzinę:
Zbiór wszystkich zwierząt

… a interesujące nas podzbiory to:
P - zbiór jednoelementowy pies [P] =1
~P - zbiór wszystkich zwierząt z wykluczeniem psa [ZWZ-P] =1
4L - zbiór zwierząt z czteroma łapami [4L]=1
~4L - zbiór zwierząt nie mających czterech łap [ZWZ-4L]=1

Oczywiście w obrębie zwierząt z czteroma łapami można tworzyć kolejny podzbiór np.
- zwierzęta dzikie
- zwierzęta domowe

… albo zwierzęta szczekające, miauczące, beczące itp.

3.1 Podstawowe operacje na zbiorach

Do obsługi całej algebry Kubusia w zbiorach wystarczą nam trzy podstawowe operacje na zbiorach plus pojęcie uzupełnienia zbioru do wybranej dziedziny.

1.
Iloczyn logiczny zbiorów (koniunkcja) to wspólna cześć zbiorów p i q bez powtórzeń
Y=p*q
gdzie:
„*” - spójnik „i”(*) z naturalnej logiki człowieka
Przykład:
p=[1,2,3,4], q=[3,4,5,6]
Y=p*q=[3,4]

2.
Suma logiczna zbiorów (alternatywa) to wszystkie elementy zbiorów p i q bez powtórzeń
Y=p+q
gdzie:
„+” - spójnik „lub”(+) z naturalnej logiki człowieka
Przykład:
p=[1,2,3,4], q=[3,4,5,6]
Y=p+q = [1,2,3,4,5,6]

3.
Różnica zbiorów to elementy zbioru p pomniejszone o elementy zbioru q
Y=p - q
gdzie:
„-„ - różnica zbiorów
Przykład:
p=[1,2,3,4]
q=[1,2]
Y = p - q = [1,2,3,4] - [1,2] = [3,4] =1 - zbiór niepusty
Y = q - p = [1,2] - [1,2,3,4] = [] =0 - zbiór pusty

4.
Uzupełnienie zbioru do wybranej dziedziny

W nowej teorii zbiorów zachodzi tożsamość:
Uzupełnienie zbioru do wybranej dziedziny = negacja zbioru = zaprzeczenie zbioru

„~” - symbol przeczenia, w naturalnej logice człowieka przedrostek „NIE”

Przykład:
Dany jest zbiór:
p=[1,2]
Przyjmijmy dziedzinę:
D=[1,2,3,4]
stąd:
~p=[3,4]
Gdzie:
~ - symbol przeczenia

Komentarz słowny w naturalnej logice człowieka:
Jeśli przyjmiemy zbiór p=[1,2] oraz wybierzemy dziedzinę D=[1,2,3,4] to zaprzeczeniem zbioru p jest zbiór ~p=[3,4]

Definicja dziedziny:
p+~p=1
p*~p=0
p+~p=[1,2]+[3,4]=[1,2,3,4]=1 =D
p*~p=[1,2]*[3,4]=[] =0

Zaprzeczenie zbioru pustego to dziedzina:
~0=1
Zaprzeczenie dziedziny to zbiór pusty:
~1=0
Stąd mamy fundament dwuelementowej algebry Kubusia:
~0=1
~1=0

W skrajnym przypadku dziedziną może być uniwersum

Definicja uniwersum:
Uniwersum to wszelkie możliwe pojęcia zrozumiałe dla człowieka

Podsumowanie:
Zauważmy, że jeśli za dziedzinę przyjmiemy uniwersum to mamy ograniczenie fizyczne, na mocy definicji nie możemy wyjść poza uniwersum. Jeśli za dziedzinę przyjmiemy dowolny inny zbiór to mamy ograniczenie dobrowolne, nie chcemy rozpatrywać przypadków spoza tej dziedziny, co nie oznacza że nie jesteśmy w stanie.

Twierdzenie Pitagorasa:
A.
Jeśli trójkąt jest prostokątny to na pewno => zachodzi suma kwadratów
TP=>SK
W poprzedniku mamy tu precyzyjnie zdefiniowaną dziedzinę:
Dziedzina = zbiór wszystkich trójkątów
… i nie ma tu najmniejszego sensu rozpatrywanie jakichkolwiek innych wielokątów, że o takich pojęciach z uniwersum jak pies czy galaktyka nie wspomnę.

Twierdzenie Pitagorasa w wersji idioty mogłoby brzmieć:
A.
Jeśli coś jest trójkątem prostokątnym to na pewno => zachodzi suma kwadratów
TP=>SK
W tym przypadku możemy przyjąć:
Dziedzina = uniwersum
To bez żadnego znaczenia poza tym że napracujemy się jak bury osioł. Zauważmy bowiem iż jeśli to „coś” nie jest trójkątem (jest np. galaktyką), to w poprzedniku będziemy mieli zbiór pusty.
A1.
Jeśli galaktyka jest trójkątem prostokątnym to na pewno => zachodzi suma kwadratów
[galaktyka]*TP=>SK = ([galaktyka]*TP)*SK = 0*x =0
Zbiory [galaktyka] i [zbiór trójkątów prostokątnych] to zbiory rozłączne, zatem ich koniunkcja jest zbiorem pustym.
Zdanie fałszywe bo galaktyka nie jest trójkątem prostokątnym (w poprzedniku mamy zbiór pusty).
Koniec końców i tak nam wyjdzie że twierdzenie Pitagorasa jest prawdziwe wyłącznie dla trójkątów prostokątnych.

Na gruncie algebry Kubusia fałszywe są także takie zdania:
A2.
Jeśli trójkąt nie prostokątny jest trójkątem prostokątnym to zachodzi suma kwadratów
(~TP*TP) =>SK = 0*x =0
Poprzednik jest tu zbiorem pustym co wymusza fałszywość całego zdania.
Prawa algebry Boole’a:
p*~p=0
0*x =0

Oczywistym jest, że logika Ziemian zwana KRZ leży tu i kwiczy bowiem twierdzi ona, że zdanie A jest prawdziwe dla trójkątów nie prostokątnych, co na mocy praw algebry Boole’a jest czysto matematycznym fałszem.

3.2 Prawo podwójnego przeczenia

Prawo podwójnego przeczenia to najważniejsze prawo nowej teorii zbiorów (i algebry Boole’a):
p=~(~p)

Rozważmy zbiór:
p=[1,2]
Przyjmijmy dziedzinę:
D=[1,2,3,4]
Stąd mamy:
~p=[3,4]

Prawo podwójnego przeczenia:
p=~(~p) = ~[3,4] = [1,2] = p

W naszej ustalonej dziedzinie:
D=[1,2,3,4]
Zbiór przeciwny (negacja „~”) do zbioru ~p to oczywiście zbiór p (dopełnienie do dziedziny)

3.3 Zdanie w algebrze Kubusia

Definicja zdania w algebrze Kubusia:
Zdanie to funkcja logiczna zbiorów wejściowych

Na mocy powyższego w algebrze Kubusia mamy naturalne znaczenie wartości logicznej zdania:
1 - zbiór wynikowy niepusty, zdanie prawdziwe
0 - zbiór wynikowy pusty, zdanie fałszywe

Najmniejszym możliwym zdaniem w naturalnej logice człowieka jest zdanie twierdzące.

Budowa zdanie twierdzącego:
Podmiot => orzeczenie = Y (wartość logiczna zdania)

Zapis ogólny zdania twierdzącego:
Y = p=>q
gdzie:
Y = wartość logiczna zdania
p - podmiot (poprzednik)
=> - spójnik „na pewno”
q - orzeczenie (następnik)
Podmiot i orzeczenie to zbiory wejściowe.
Sam podmiot lub samo orzeczenie na mocy definicji nie jest zdaniem.

Definicja spójnika „na pewno” => (warunek wystarczający):
=> - zbiór zdefiniowany na podstawie wektora => musi zawierać się w zbiorze zdefiniowanym przez strzałkę wektora =>
W logice spójnik „na pewno” jest spójnikiem domyślnym i nie musi być wypowiadany.

Przykład zdania twierdzącego prawdziwego:
A1: Pies ma cztery łapy
A2: Pies na pewno => ma cztery łapy
P=>4L = P*4L = 1*1 =1
Zbiór „pies” zawiera się w zbiorze „zwierząt z czteroma łapami” stąd:
P=>4L = P*4L = P =1 - zbiór wynikowy niepusty, zdanie prawdziwe.
A1 = A2 - zdania tożsame

Przykład zdania twierdzącego fałszywego:
B1: Pies nie ma czterech łap
B2: Pies na pewno => nie ma czterech łap
B3: Pies może ~~> nie mieć czterech łap
P~~>~4L = P*~4L = 1*1 =0
P - zbiór jednoelementowy „pies”
~4L - zbiór zwierząt „nie mających czterech łap” (kura, wąż ..)
Oba zbiory istnieją (P=1 i ~4L=1) lecz są rozłączne, co wymusza w wyniku 0
gdzie:
Ogólna definicja znaczka ~~>:
p~~>q
~~> naturalny spójnik „może”, wystarczy znaleźć jeden element wspólny zbiorów p i q

B1 = B2 - zdania tożsame
Oczywiście jeśli zdanie B3 jest fałszem to tym bardziej zdanie B1=B2 jest fałszem.
Doskonale widać, że zdanie fałszywe uzyskujemy poprzez zaprzeczenie orzeczenia (następnika).

Pełna definicja zdania twierdzącego prawdziwego:
A: p=>q = p*q =p =1 - zbiór p zawiera się w zbiorze q
B: p~~>~q =p*~q =1*1 =0 - zbiory p i ~q są rozłączne, co wynika ze zdania A
Dowolne zdanie twierdzące jest prawdziwe wtedy i tylko wtedy gdy spełniona jest pełna definicja prawdziwości tego zdania jak wyżej.

Przykład zdania fałszywego:
A1: Pies miauczy
A2: Pies na pewno => miauczy
A1 = A2 - zdania tożsame
A3: Pies może ~~> miauczeć
P~~>M = P*M = 1*1 =0
P - zbiór „pies”
M - zbiór „zwierząt miauczących”
Oba zbiory istnieją (P=1 i M=1) lecz są rozłączne co wymusza w wyniku 0
Oczywiście jeśli zdanie A3 jest fałszywe, to tym bardziej fałszywe jest zdanie A1 = A2.

Dowolne pojęcie znane człowiekowi ma wartość logiczną 1 bo istnieje, także zaprzeczenie tego pojęcia ma wartość logiczną 1, bo też istnieje i jest zrozumiałe.

Przykład:
p=[pies] =1 - zbiór niepusty

~P = ~[pies] = ???
Pojecie ~[ pies] ( nie-pies) może być czymkolwiek, w skrajnym przypadku dowolnym pojęciem zrozumiałym dla człowieka jakie przyjdzie mu do głowy, czyli zbiorem uniwersum pomniejszonym o zbiór „pies”.
~P=~[pies] = [uniwersum-pies]
gdzie:
Uniwersum to wszelkie możliwe pojęcia znane człowiekowi

Oczywiście najczęściej pod pojęciem „nie pies” rozumiemy dowolne zwierzę z wyłączeniem „psa”, zawężając dziedzinę do zbioru zwierząt, ale w ogólnym przypadku nie musimy tego robić.

~p = ~[pies] = [krowa, drzewo, samochód, galaktyka …] =1
Jeśli coś „nie jest psem” to może być czymkolwiek

Świadczy o tym prawdziwość zdań typu:
A.
Pies to nie galaktyka
Pies na pewno => nie jest galaktyką
P => ~G = P*~G = P =1
Bycie psem wystarcza => aby nie być galaktyką
Przyjmujemy dziedzinę:
Uniwersum - wszelkie możliwe pojęcia znane człowiekowi
Oba zbiory istnieją:
P = [pies]=1
G = [galaktyka] =1
~G = [uniwersum - galaktyka]
~G - wszelkie możliwe pojęcia (uniwersum) z wykluczeniem „galaktyki”
Oczywiście zbiór „pies” mieści się w zbiorze ~G, dlatego:
P=>~G = P*~G = P =1 - zbiór niepusty

Prawo nowej teorii zbiorów dla zbiorów rozłącznych p i q:
p*~q =p =1 - zbiór niepusty p

B.
Pies jest galaktyką
Pies na pewno => jest galaktyką
P=>G = P*G =1*1 =0
Pies może ~~> być galaktyką
P~~>G = P*G = 1*1 =0
Oba zbiory istnieją (P=1 i G=1) ale są rozłączne co wymusza w wyniku 0

Oczywiście jeśli:
P~~>G =0
to tym bardziej:
P=>G =0

Zdania A i B razem, to definicja warunku wystarczającego dla zbiorów rozłącznych p i q:
A: p=>~ q = p*~q = p =1 - zbiór niepusty
B: p~~>q = p*q =1*1 =0 - bo zbiory p i q są rozłączne

Ogólne definicje znaczków => i ~~>:
=> - zbiór na podstawie wektora => musi zawierać się w całości w zbiorze wskazywanym przez strzałką wektora =>
~~> - zbiór na podstawie wektora ~~> ma co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>

Jak widzimy, zaprzeczenie zdania A w warunku wystarczającym to zaprzeczenie orzeczenia (q).
Zauważmy, że minimalną jednostką komunikacji człowieka z człowiekiem jest zdanie a nie goły zbiór.

Nikt nie wymawia gołych słów (zbiorów) typu:
krowa, cztery nogi, samochód, mgła, galaktyka …
Oczywiście to nie są zdania, zdanie minimalne musi zawierać podmiot i orzeczenie.

3.4 Czym różni się zdanie twierdzące od zdania warunkowego?

Budowa zdania warunkowego:
Jeśli p to q
Jeśli zajdzie p to zajdzie q
gdzie:
p - poprzednik
q - następnik

Przykład:
A.
Jeśli zwierzę jest psem to ma cztery łapy
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L =1 bo pies
Ogólna definicja znaczka => (warunek wystarczający):
=> - zbiór wskazywany przez podstawę wektora => musi zawierać się w zbiorze wskazywanym przez strzałkę wektora =>
Wypowiadając zdanie warunkowe „Jeśli p to q” w poprzedniku p ustalamy precyzyjnie dziedzinę:
Dziedzina = zbiór wszystkich zwierząt
Zbiory:
P=>4L = P*4L = P =1
W naszym przypadku definicja znaczka => jest spełniona bo zbiór „pies” zawiera się w zbiorze zwierząt z czteroma łapami (4L).
stąd:
B.
Jeśli zwierzę jest psem to może ~~> nie mieć czterech łap
P~~>~4L = 1*1 =0
Zbiory:
P~~>~4L = P*~4L =1*1=0
Oba zbiory istnieją (P=1 i ~4L=1) ale są rozłączne, co wymusza w wyniku 0

Naturalnym pytaniem 5-cio latka będzie tu:
Tata, a jeśli zwierzę nie jest psem?
Tata:
Prawo Kubusia:
P=>4L = ~P~>~4L
stąd:
C.
Jeśli zwierzę nie jest psem to może ~> nie mieć czterech łap
~P~>~4L = 1 bo kura, wąż ..
Ogólne znaczenie znaczka ~> (warunek konieczny, w implikacji spójnik „może”):
~> - zbiór na podstawie wektora ~> musi zawierać w sobie zbiór wskazywany przez strzałkę wektora ~>
Zbiory:
~P~>~4L = ~P*~4L = ~4L =1
Nie bycie psem jest warunkiem koniecznym ~> aby nie mieć czterech łap
Zabieram zbiór „nie psów” i znika mi zbiór zwierząt nie mających czterech łap (~4L)
lub
D.
Jeśli zwierzę nie jest psem to może ~~> mieć cztery łapy
~P~~>4L =1 bo koń, słoń …
Zbiory:
~P~~>4L = ~P*4L = 1*1 =1 bo słoń
Ogólna definicja znaczka ~~>:
~~> - naturalny spójnik „może”, zbiór wskazywany przez podstawę wektora ~~> musi mieć co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>

W analogicznym zdaniu twierdzącym mamy dokładnie to samo:
A.
Pies ma cztery łapy
Pies na pewno => ma cztery łapy
P=>4L
W zdaniu twierdzącym dajemy do zrozumienia, iż (póki co) chodzi nam wyłącznie o zbiór „psów”, że nie interesują nas inne zwierzęta.
Zbiory:
P=>4L = P*4L = P =1
Definicja znaczka => jest spełniona bo zbiór „pies” zawiera się w zbiorze zwierząt z czteroma łapami (4L).

Nie oznacza to oczywiście iż 5-cio latkowi nie wolno zadać pytania:

… tata, a nie pies?
Tata:
Prawo Kubusia:
P=>4L = ~P~>~4L
stąd:
C.
Nie pies może ~> nie mieć czterech łap
~P~>~4L =1 bo kura, wąż ..
Zbiory:
~P~>~4L = ~P*~4L = ~4L =1
Nie bycie psem jest warunkiem koniecznym ~> aby nie mieć czterech łap
Zabieram zbiór „nie psów” i znika mi zbiór zwierząt nie mających czterech łap (~4L)
lub
D.
Nie pies może ~~> mieć cztery łapy
~P~~>4L =1 bo słoń, koń
Zbiory:
~P~~>4L = ~P*4L = 1*1 =1 bo słoń
Ogólna definicja znaczka ~~>:
~~> - naturalny spójnik „może”, zbiór wskazywany przez podstawę wektora ~~> musi mieć co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>

Zauważmy, że zdania twierdzącego A nie wolno nam kodować ani tak:
A.
Pies ma cztery łapy
P = 4L
Tu zbiór „pies” jest tożsamy ze zbiorem zwierząt mających cztery łapy (4L), co jest oczywistym fałszem

ani też tak:
A.
Pies ma cztery łapy
p =1 - zdanie prawdziwe

Bowiem w obu przypadkach leżymy i kwiczymy w banalnym pytaniu każdego 5-cio latka.
… tata, a nie pies?

4.0 Operatory jednoargumentowe

Definicja jednoargumentowego operatora logicznego:
Jednoargumentowy operator logiczny to funkcja logiczna jednej zmiennej binarnej

Możliwe są dwa takie operatory:
Y=p - operator transmisji
Y=~p - operator negacji

4.1 Abstrakcyjna budowa operatora logicznego

Wyobraźmy sobie czarną skrzynkę w której pracuje dwóch krasnoludków, Transmiterek i Negatorek.
Na przedniej ściance skrzynki zamontowany jest najzwyklejszy wyłącznik światła sterujący lampką człowieka typu zaświeć/zgaś. Po przeciwnej stronie skrzynki znajduje się lampka sterowana wyłącznie przez krasnoludka pracującego w środku skrzynki.

Po stronie człowieka dostępne są jeszcze dwa tajemnicze przyciski z opisem:
A - zezwalaj na pracę Transmiterka
A=1 - zezwalaj
A=0 - zabroń
B - zezwalaj na pracę Negatorka
B=1 - zezwalaj
B=0 - zabroń

Ustawmy na początek krasnoludkowe przełączniki w pozycję:
A=0 i B=0
1.
Jak widzimy lampką człowieka możemy sterować zaświecając ją i gasząc przełącznikiem, jednak lampka krasnoludka jest cały czas zgaszona.
2.
Pozwólmy na pracę wyłącznie Transmiterka ustawiając przełączniki:
A=1 i B=0
Jak widzimy, jeśli zaświecimy lampkę człowieka to automatycznie zapali się lampka krasnoludka, jeśli ją zgasimy to lampka krasnoludka również zgaśnie.
3.
Ustawmy teraz przełączniki w pozycję:
A=0 i B=1
pozwalając pracować wyłącznie Negatorkowi
Tym razem każde zaświecenie lampki człowieka skutkuje wygaszeniem lampki krasnoludka i odwrotnie.
4.
Ostatnia możliwość to zezwolenie na jednoczesną pracę obu krasnoludków poprzez ustawienie przełączników w pozycję:
A=1 i B=1
Ajajaj!
Jak widzimy możemy bez problemów zapalać i gasić lampkę człowieka jednak żarówka krasnoludka ledwie się pali, na dodatek z pudła wydobywa się czarny dym co jest dowodem walki na śmierć i życie między Tansmiterkiem a Negatorkiem. Jeden za wszelką cenę chce zaświecić lampkę, a drugi za wszelką cenę ją zgasić.
Ustawmy szybko przełączniki w pozycję:
A=0 i B=0
Nie możemy przecież dopuścić do zagłady krasnoludków, bo co powiedzą nasze dzieci?

W naszym abstrakcyjnym modelu wejściową zmienną binarną p jest lampka człowieka.
Wyjściem w tym modelu jest lampka krasnoludka którą oznaczamy Y.

Definicja jednoargumentowego operatora logicznego:
Jednoargumentowy operator logiczny to funkcja logiczna jednej zmiennej binarnej

Definicja operatora transmisji:
Y=p
Jeśli lampka człowieka się świeci (p=1) to lampka krasnoludka też się świeci (Y=1)
Jeśli lampka człowieka jest zgaszona (p=0) to również lampka krasnoludka jest zgaszona (Y=0)

Stąd mamy zero-jedynkową definicje operatora transmisji:
Y=p
[linki]

Definicja operatora negacji:
Y=~p
Jeśli lampka człowieka się świeci (p=1) to lampka krasnoludka jest zgaszona (Y=0)
Jeśli lampka człowieka jest zgaszona (p=0) to lampka krasnoludka się świeci (Y=1)

Stąd mamy zero-jedynkową definicję operatora negacji:
Y=~p
[linki]

… a jeśli nie wiemy który krasnoludek aktualnie pracuje, to czy możemy rozszyfrować który?
Oczywiście że tak.
Na wejściu p wymuszamy wszystkie możliwe stany. Odpowiedź na wyjściu Y jednoznacznie definiuje nam operator. Najważniejsze operatory jednoargumentowe właśnie poznaliśmy.

Definicja operatora logicznego w technicznej algebrze Boole’a:
Operator logiczny to odpowiedź układu na wszystkie możliwe wymuszenia zer i jedynek na wejściu układu.

Nie jest prawdą, że możemy zdefiniować wyłącznie dwa operatory jednoargumentowe jak wyżej.

Dwa kolejne operatory jednoargumentowe to:
1.
Jednoargumentowy operator chaosu o definicji:
[linki]
Jak widzimy, tu lampka krasnoludka pali się cały czas, bez względu na stan wejściowej lampki człowieka p. Materia istnieje (Y=1) ale jest w kompletnym chaosie, wszystko może się zdarzyć.
2.
Jednoargumentowy operator śmierci:
[linki]
Tu lampka krasnoludka jest cały czas zgaszona, bez wzglądu na to co też ten człowiek na wejściu p sobie wyprawia. To jest stan naszego Wszechświata przed jego stworzeniem, materia nie istnieje, żadne pojęcie rodem z naszego Wszechświata nie jest zdefiniowane.

Definicja operatora logicznego w technicznej algebrze Boole’a:
Operator logiczny to odpowiedź układu na wszystkie możliwe wymuszenia zer i jedynek na wejściu układu.

W logice wyróżniamy:
1.
Operatory jednoargumentowe o jednym wejściu p i jednym wyjściu Y
2.
Operatory dwuargumentowe o dwóch wejściach p i q i jednym wyjściu Y.
Przy dwóch wejściach p i q możliwe są cztery różne wymuszenia na wejściach p i q.

Ogólna definicja operatora dwuargumentowego:
[linki]
Jak widzimy przy dwóch wejściach p i q możemy zdefiniować 16 różnych stanów na wyjściu Y, czyli 16 różnych na mocy definicji operatorów logicznych.

Najważniejsze operatory dwuargumentowe to:
[linki]
Znaczenie znaczków =>, ~> i ~~> już poznaliśmy.

4.2 Operator transmisji w zbiorach

Operator transmisji to funkcja niezanegowanej zmiennej wejściowej p
Y=p

Operator transmisji w zbiorach:

Pełna definicja operatora transmisji to układ dwóch równań logicznych opisujących dwa rozłączne obszary Y i ~Y:
Y=p
~Y=~p
Jak widzimy, suma logiczna zbiorów Y i ~Y definiuje nam dziedzinę.

Utwórzmy tabelę zero-jedynkową operatora transmisji.

Tabela prawdy operatora transmisji:
[linki]
Tożsamość kolumn wynikowych AB4 i AB8 jest dowodem formalnym prawa podwójnego przeczenia:
p=~(~p)

Symboliczna definicja operatora transmisji to układ równań logicznych A i B:
A.
Y=p
co matematycznie oznacza:
Y=1 <=> p=1
Definicja symboliczna w linii A123, zero-jedynkowa w linii A45
W obsłudze zdania:
Y=p
bierze udział wyłącznie linia A (A123 + A45), linia B jest martwa.

B.
~Y=~p
co matematycznie oznacza
~Y=1 <=> ~p=1
Definicja symboliczna w linii B123, zero-jedynkowa w linii B67
W obsłudze zdania:
~Y=~p
bierze udział wyłącznie linia B (B123 + B67), linia A jest martwa

Związek logiki dodatniej i ujemnej:
Y = ~(~Y)
Podstawiając A i B mamy prawo podwójnego przeczenia:
p = ~(~p)

Przykład:
Dany jest zbiór
p=[1,2]
Przyjmijmy dziedzinę:
D=[1,2,3,4]
stąd przeczenie (uzupełnienie do dziedziny):
~p=[3,4]

Y = p= [1,2]
~Y = ~p = [3,4]
Związek logiki dodatniej (bo Y) i ujemnej (bo ~Y)
Y=~(~Y)
[1,2] = ~[3,4] = [1,2]
Negacja zbioru [3,4] do dziedziny to zbiór [1,2]

Przykład przedszkolaka:
A1.
Jutro pójdę do kina
Y=K
co matematycznie oznacza:
Y=1 <=> K=1
Czytamy:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
Szczegółowo czytamy:
Prawdą jest (=1), że dotrzymam słowa (Y) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
Y=1 <=> K=1
B3.
… a kiedy skłamię?
Przechodzimy z równaniem A1 do logiki ujemnej (bo ~Y) poprzez negację stronami:
~Y=~K
Stąd:
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
~Y=~K
co matematycznie oznacza:
~Y=1 <=> ~K=1
Szczegółowo czytamy:
Prawdą jest (=1) że skłamię (~Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)

Definicja logiki dodatniej i ujemnej dla funkcji logicznej Y:
Y - dotrzymam słowa, logika dodatnia bo Y
~Y - skłamię, logika ujemna bo ~Y

Oczywiście matematyczne zachodzi:
Y # ~Y - bo kolumny wynikowe są różne
Związek logiki dodatniej i ujemnej:
Logika dodatnia (Y) to zanegowana logika ujemna ~(~Y)
Y=~(~Y)
Podstawiając A1 i B3 mamy:
Y=K = ~(~K)
Stąd zdanie równoważne do A1:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy nie zdarzy się ~(…) że jutro nie pójdę do kina
Y=~(~K)

4.3 Operator negacji w zbiorach

Operator negacji to funkcja zanegowanej zmiennej wejściowej p
Y=~p

Operator negacji w zbiorach:

Pełna definicja operatora negacji to układ dwóch równań logicznych opisujących dwa rozłączne obszary Y i ~Y:
Y=~p
~Y=p
Jak widzimy, suma logiczna zbiorów Y i ~Y definiuje nam dziedzinę.

Tabela prawdy operatora negacji:
[linki]
Tożsamość kolumn wynikowych AB7 i AB8 jest dowodem formalnym prawa podwójnego przeczenia:
p=~(~p)

Symboliczna definicja operatora negacji to układ równań logicznych A i B:
A.
Y=~p
co matematycznie oznacza:
Y=1 <=> ~p=1
Definicja symboliczna w linii A123, zero-jedynkowa w linii A45
W obsłudze zdania:
Y=~p
bierze udział wyłącznie linia A (A123 + A45), linia B jest martwa.
B.
~Y= p
co matematycznie oznacza
~Y=1 <=> p=1
Definicja symboliczna w linii B123, zero-jedynkowa w linii B67
W obsłudze zdania:
~Y= p
bierze udział wyłącznie linia B (B123 + B67), linia A jest martwa

Związek logiki dodatniej i ujemnej:
Logika dodatnia (Y) to zanegowana logika ujemna ~(~Y)
Y = ~(~Y)
Podstawiając A i B mamy:
~p = ~(p)
Prawo podwójnego przeczenia otrzymujemy ze związku:
Logika ujemna ~Y to zanegowana logika dodatnia ~(Y)
~Y = ~(Y)
p = ~(~p)

Przykład:
Y=~p = [3,4]
Dziedzina:
D=[1,2,3,4]
~Y=~(~p) = p = [1,2]
Związek logiki dodatniej (bo Y) i ujemnej (bo ~Y)
Y = ~(~Y)
[3,4] = ~[1,2] = [3,4]
Uzupełnieniem zbioru ~[1,2] do dziedziny jest zbiór [3,4]

Przykład przedszkolaka:
A1.
Jutro nie pójdę do kina
Y=~K
co matematycznie oznacza:
Y=1 <=> ~K=1
Czytamy:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
Szczegółowo czytamy:
Prawdą jest (=1), że dotrzymam słowa (Y) wtedy i tylko wtedy gdy jutro nie pójdę do kina (~K=1)
Y=1 <=> ~K=1
B3.
… a kiedy skłamię?
Przechodzimy z równaniem A1 do logiki ujemnej (bo ~Y) poprzez negację stronami:
~Y=K
Stąd:
Skłamię (~Y=1) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)
~Y=K
co matematycznie oznacza:
~Y=1 <=> K=1
Szczegółowo czytamy:
Prawdą jest (=1) że skłamię (~Y) wtedy i tylko wtedy gdy jutro pójdę do kina (K=1)

Definicja logiki dodatniej i ujemnej dla funkcji logicznej Y:
Y - dotrzymam słowa, logika dodatnia bo Y
~Y - skłamię, logika ujemna bo ~Y

Oczywiście matematyczne zachodzi:
Y # ~Y - bo kolumny wynikowe są różne
Związek logiki dodatniej i ujemnej:
Y=~(~Y)
Podstawiając B3 mamy:
Y= ~(K)
Stąd zdanie równoważne do A1:
Dotrzymam słowa (Y=1) wtedy i tylko wtedy gdy nie zdarzy się ~(…) że jutro pójdę do kina (K=1)
Y=~(K)

5.0 Operatory implikacji i równoważności

Algebra Kubusia to symboliczna algebra Boole’a, gdzie nie ma ani jednej tabeli zero-jedynkowej. Cała logika zakodowana jest w równaniach algebry Boole’a (zbiorach) izolowanych od tabel zero i jedynkowych. Oczywiście w dowolnej chwili można przejść z równania algebry Boole’a do tabeli zero-jedynkowej i odwrotnie.

Cała tajemnica implikacji i równoważności to zaledwie trzy znaczki =>, ~> i ~~>.

1.
Ogólna definicja znaczka => (warunek wystarczający):
p=>q
=> - zbiór na podstawie wektora => musi zawierać się w zbiorze wskazywanym przez strzałkę wektora =>
Przykład:
Jeśli zwierzę jest psem to na pewno => ma cztery łapy
P=>4L = P*4L =P =1 bo pies
Zbiór „pies” zawiera się w zbiorze zwierząt z czteroma łapami
Wymuszam dowolne P i musi pojawić się 4L
2.
Ogólna definicja znaczka ~> (warunek konieczny):
p~>q
~> - zbiór na podstawie wektora ~> musi zawierać w sobie zbiór wskazywany przez strzałkę wektora ~>.
Przykład:
Jeśli zwierzę ma cztery łapy to może ~> być psem
4L~>P = 4L*P =P =1 bo pies
Zbiór zwierząt z czteroma łapami zawiera w sobie zbiór „pies”
4L jest konieczne dla P
Zabieram zbiór 4L i znika mi zbiór P
3.
Ogólna definicja znaczka ~~> (naturalny spójnik „może”):
~~> - zbiór na podstawie wektora ~~> musi mieć co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>
Przykład:
Jeśli zwierzę ma cztery łapy to może ~~> nie być psem
4L~~>~P = 4L*~P =1 bo słoń, koń …
Wystarczy znaleźć jeden element należący do zbiorów 4L i ~P

Związek operatorów implikacji prostej i odwrotnej w technicznej algebrze Boole’a.

Techniczna definicja implikacji prostej:
[linki]
Dokładnie ta sama definicja w równaniu algebry Boole’a (algebrze Kubusia):
p=>q = ~p~>~q
Warunek wystarczający => w logice dodatniej (bo q) jest tożsamy z warunkiem koniecznym ~> w logice ujemnej (bo ~q). Po obu stronach tożsamości muszą być te same parametry p i q.

Techniczna definicja implikacji odwrotnej:
[linki]
Dokładnie ta sama definicja w równaniu algebry Boole’a (algebrze Kubusia):
p~>q = ~p=>~q
Warunek konieczny ~> w logice dodatniej (bo q) jest tożsamy z warunkiem wystarczającym => w logice ujemnej (bo ~q). Po obu stronach tożsamości muszą być te same parametry p i q.

Matematycznie zachodzi:
Implikacja prosta ## Implikacja odwrotna
p=>q = ~p~>~q ## p~>q = ~p=>~q
gdzie:
## - rożne na mocy definicji
W tym przypadku po obu stronach znaku ## mogą być dowolne parametry p i q, nie muszą być te same.

Definicje implikacji prostej i odwrotnej w równaniach algebry Boole’a to jednocześnie prawa Kubusia.

I prawo Kubusia:
p=>q = ~p~>~q - implikacja prosta w logice dodatniej (bo q)
Oczywiście powyższe prawo możemy zapisać tak:
~p~>~q = p=>q - implikacja odwrotna w logice ujemnej (bo ~q)
Implikacja prosta w logice dodatniej (bo q) jest tożsama z implikacją odwrotną w logice ujemnej (bo ~q) i odwrotnie.

Dowód formalny I prawa Kubusia:
[linki]
Tożsamość kolumn 3 i 6 jest dowodem formalnym I prawa Kubusia:
p=>q = ~p~>~q
W tym przypadku parametry formalne p i q muszą być tymi samymi parametrami.

II prawo Kubusia:
p~>q = ~p=>~q - implikacja odwrotna w logice dodatniej (bo q)
~p=>~q = p~>q - implikacja prosta w logice ujemnej (bo ~q)
Implikacja odwrotna w logice dodatniej (bo q) jest tożsama z implikacją prostą w logice ujemnej (bo ~q) i odwrotnie.

Dowód formalny II prawa Kubusia:
[linki]
Tożsamość kolumn 3 i 6 jest dowodem formalnym II prawa Kubusia:
p~>q = ~p=>~q
W tym przypadku parametry formalne p i q muszą być tymi samymi parametrami.

… zacznijmy jednak od operatora chaosu.

5.1 Operator chaosu w zbiorach

Zero-jedynkowa definicja operatora chaosu ~~>:
[linki]
Ta sama definicja w równaniu algebry Kubusia:
p~~>q =1

Definicja operatora chaosu w zbiorach:

Definicja operatora chaosu:
Jeśli zajdzie p to „może” zajść q
p~~>q =1
Zbiór p ma część wspólną ze zbiorem q i żaden z nich nie zawiera się w drugim.

Ogólne znaczenie znaczka ~~> (naturalnego spójnika „może”):
p~~>q
~~> - zbiór wskazywany przez podstawę wektora ~~> ma przynajmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~>

Zauważmy, że na mocy definicji zachodzi:
Operator chaosu ## naturalny spójnik „może” ~~>
gdzie:
## - różne na mocy definicji

Definicja naturalnego spójnika „może” ~~>:
~~> - naturalny spójnik „może”, wystarczy pokazać jeden element należący do zbiorów p i q, wystarczy sama możliwość zajścia.
Nie ma tu wymagania, aby zbiory p i q były ze sobą w takiej czy nie innej korelacji.

Przykłady:
1
Jeśli jutro będzie pochmurno to może nie padać
CH~~>~P=1
Zbiory (stany):
CH~~>~P = CH*~P=1*1=1
Możliwe jest jednoczesne zajście stanów „chmury” i „nie pada” dlatego to zdanie jest prawdziwe.
2.
Jeśli jutro nie będzie pochmurno to może padać
~CH~~>P =0
Zbiory (stany)
~CH~~>P = ~CH*P =1*1=0
Oba stany są możliwe (~CH=1 i P=1), ale ich jednoczesne wystąpienie nie jest możliwe, dlatego to zdanie jest fałszywe.
3.
Prawdziwe są nawet takie zdania:
Jeśli trójkąt jest prostokątny to może ~~> zachodzić suma kwadratów
TP~~>SK =1
Zbiory:
TP~~>SK = TP*SK=1*1=1
Oba zbiory istnieją (TP=1 i SK=1) i mają co najmniej jeden element wspólny, dlatego to zdanie spełnia definicję naturalnego spójnika „może” ~~>.
Wystarczy, że pokażemy jeden taki trójkąt.
Oczywiście wiemy, że w każdym trójkącie prostokątnym zachodzi suma kwadratów, ale ta wiedza nie jest potrzebna dla dowodu prawdziwości powyższego zdania z naturalnym spójnikiem „może” ~~>.

Symboliczna definicja operatora logicznego:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q

Korzystając z prawa Prosiaczka:
p=0<=>~p=1
dokładniej z tego:
Jeśli p=0 to ~p=1
Sprowadzamy tabelę zero-jedynkową operatora chaosu to teorii zbiorów.

Symboliczna definicja operatora chaosu:
[linki]
Algorytm tworzenia definicji symbolicznej ABCD67 z definicji zero-jedynkowej ABCD12 na mocy prawa Prosiaczka:
1.
Jeśli na wybranek pozycji występuje 1 to przepisujemy nagłówek kolumny
2.
Jeśli na wybranej pozycji występuje 0 to przepisujemy zanegowany nagłówek kolumny
3.
Wiersze w obszarze ABCD67 łączymy spójnikiem „i”(*):
„i”(*) - iloczyn logiczny zbiorów (koniunkcja zbiorów).

W operatorze chaosu wszystkie wyjścia (kolumna 8) muszą mieć wartość logiczną 1
Stąd:
p~~>q
~~> - naturalny spójnik „może”, wystarczy pokazać jeden element wspólny zbiorów p i q, wystarczy sama możliwość zaistnienia

Prosty przykład operatora chaosu w zbiorach:

Rozważmy dwa zbiory:
p=[1,2,3,4]
q=[3,4,5,6]
Ustalmy dziedzinę:
D=[1,2,3,4,5,6,7,8]
Stąd otrzymujemy:
~p=[5,6,7,8]
~q=[1,2,7,8]

Zbiór p ma część wspólną ze zbiorem q i żaden z nich nie zawiera się w drugim
Na mocy definicji musi to być operator chaosu.

Na gruncie nowej teorii zbiorów można łatwo udowodnić iż nasz przykład spełnia definicję operatora chaosu, nawet nie znając definicji symbolicznej operatora chaosu.

Symboliczna definicja operatora logicznego w algebrze Kubusia:
Operator logiczny to odpowiedź układu na wszystkie możliwe przeczenia p i q

Zacznijmy od zapisania wszystkich możliwych przeczeń p i q:
A: p~~>q = p*q = [1,2,3,4]*[3,4,5,6] =[3,4] =1 - zbiór niepusty
B: p~~>~q = p*~q = [1,2,3,4]*[1,2,7,8] =[1,2] =1 - zbiór niepusty
C: ~p~~>~q = ~p*~q = [5,6,7,8]*[1,2,7,8] =[7,8] =1 - zbiór niepusty
D: ~p~~>q = ~p*q = [5,6,7,8]*[3,4,5,6] =[5,6] =1 zbiór niepusty
stąd:
Symboliczna definicja operatora:
[linki]

Dla punktu odniesienia ustawionym na zdaniu A otrzymujemy tabelę zero-jedynkową operatora chaosu.
A: p~~>q = p*q
p=1, ~p=0
q=1, ~q=0

Stąd otrzymujemy:
[linki]
Algorytm tworzenia tabeli zero-jedynkowej ABCD678 z definicji symbolicznej ABCD125 (ABCD345):
1.
Jeśli na danej pozycji występuje zgodność sygnału z nagłówkiem to zapisujemy 1
2.
Jeśli na danej pozycji występuje niezgodność sygnału z nagłówkiem to zapisujemy 0

Algorytm odwrotny jest oczywisty.

Algorytm tworzenia definicji symbolicznej ABCD123 na podstawie tabeli zero-jedynkowej ABCD456:
1.
Jeśli na danej pozycji występuje 1 to przepisujemy nagłówek tabeli
2.
Jeśli na danej pozycji występuje 0 to przepisujemy zanegowany nagłówek tabeli
3.
W naturalnej logice człowieka zmienne p i q łączymy w wierszach spójnikiem „i”(*)

Mając tabelę zero-jedynkową zaglądamy do definicji wszystkich możliwych operatorów logicznych (jest ich 16) gdzie rozstrzygamy, iż uzyskana tabela zero-jedynkowa to definicja operatora chaosu.

Zauważmy, że w teorii zbiorów wystarczy rozstrzygnąć iż zbiory wynikowe A, B, C i D nie są puste.

Twierdzenie:
W dowolnym zdaniu z dwoma parametrami p i q z naturalnego języka mówionego, dla rozstrzygnięcia definicję jakiego operatora logicznego spełnia to zdanie wystarczy rozpatrzyć cztery przypadki uwzględniające wszystkie możliwe przeczenia p i q.
Przykład wyżej.

To jest metoda najprostsza, ale zarazem najgorsza, nie pozwalająca operować prawami zakodowanymi wewnątrz tabeli zero-jedynkowej każdego operatora, zgodnymi z naturalną logiką człowieka. Akurat w przypadku operatora chaosu wewnątrz definicji zero-jedynkowej nie zachodzą żadne prawa logiczne, w przeciwieństwie do innych operatorów: OR, AND, =>, ~>, <=>, co za chwilę zobaczymy.

Przykład z matematycznego przedszkola:
A.
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 3
P8~~>P3=1 bo 24

Analiza matematyczna przez wszystkie możliwe przeczenia p i q:
A.
Jeśli liczba jest podzielna przez 8 to może być podzielna przez 3
P8~~>P3 = P8*P3 =1 bo 24
B.
Jeśli liczba jest podzielna przez 8 to może nie być podzielna przez 3
P8~~>~P3 = P8*~P3 =1 bo 8
C.
Jeśli liczba nie jest podzielna przez 8 to może nie być podzielna przez 3
~P8~~>~P3 = ~P8*~P3 =1 bo 5
D.
Jeśli liczba nie jest podzielna przez 8 to może być podzielna przez 3
~P8~~>P3 = ~P8*P3 =1 bo 3

Wystarczy znaleźć po jednym elemencie wspólnym dla A, B, C, D i mamy rozstrzygnięcie.
Zdanie A jest zawsze prawdziwe, niezależnie od przeczeń p i q, zatem jest to matematyczny śmieć.
Komu potrzebne są twierdzenia tego typu w matematyce?

Twierdzenie:
W operatorze chaosu argumenty są przemienne, zatem jeśli zdanie p~~>q spełnia definicję operatora chaosu to zdanie q~~>p również spełnia definicję operatora chaosu.

Nasze zdanie A po zamianie p i q przyjmuje postać:
A.
Jeśli liczba jest podzielna przez 3 to może być podzielna przez 8
P3~~>P8=1 bo 24

Dowód formalny przemienności argumentów w operatorze chaosu:
[linki]
Tożsamość dwóch ostatnich kolumn jest dowodem formalnym przemienności argumentów w operatorze chaosu.

5.2 Implikacja prosta w zbiorach

Zapiszmy definicję implikacji prostej w zbiorach, korzystając z prawa Prosiaczka.
Prawo Prosiaczka:
p=0 <=> ~p=1
stąd:
Jeśli p=0 to ~p=1
[linki]
Algorytm tworzenia symbolicznych wejść p i q:
Jeśli na wybranej pozycji w tabeli ABCD12 widnieje 1 to przepisujemy nagłówek kolumny (do ABCD45)
Jeśli na wybranej pozycji w tabeli ABCD12 widnieje 0 to przepisujemy zanegowany nagłówek kolumny (do ABCD45)

Jak widzimy wszystkie zmienne wejściowe p i q w tabeli ABCD456 zostały sprowadzone do jedynek, czyli do teorii zbiorów.
Z obszaru AB456 doskonale widać, że zbiór p musi zawierać się w zbiorze q, bowiem wtedy i tylko wtedy zajdzie w zbiorach:
p*~q =0
Z obszaru CD456 widzimy, że zbiory p i q nie mogą być tożsame, bowiem jak zajdzie ~p to może zajść cokolwiek ~q (C456)albo q (D456).
Stąd mamy definicję implikacji prostej w zbiorach.

Definicja implikacji prostej w zbiorach:

Definicja implikacji prostej w logice dodatniej (bo q) w zbiorach:
p=>q = ~p~>~q
p=>q
Zbiór p zawiera się w zbiorze q i nie jest tożsamy ze zbiorem q

Definicja warunku wystarczającego => w zbiorach:
p=>q
Jeśli zajdzie p to na pewno => zajdzie q
Zbiór p zawiera się w zbiorze q
Zajście p jest warunkiem wystarczającym => dla zajścia q
Wymuszam dowolne p i musi pojawić się q

Ogólna definicja znaczka => (warunek wystarczający):
=> - zbiór na podstawie wektora => musi zawierać się w zbiorze wskazywanym przez strzałkę wektora =>

Definicja tożsama to definicja implikacji odwrotnej w logice ujemnej (bo ~q):
~p~>~q = p=>q
~p~>~q
Zbiór ~p musi zawierać w sobie zbiór ~q i nie być tożsamy ze zbiorem ~q

Ogólna definicja znaczka ~> (warunek konieczny):
~> - zbiór na podstawie wektora ~> musi zawierać w sobie zbiór wskazywany przez strzałkę wektora ~>
~p~>~q
Zabieram ~p i musi zniknąć ~q
Zajście ~p jest konieczne dla zajścia ~q

Symboliczna definicja implikacji prostej:
[linki]
gdzie:
1.
=> - warunek wystarczający, spójnik „na pewno” między p i q w całym obszarze matematyki o definicji wyłącznie w A i B.
Ogólna definicja znaczka => (warunek wystarczający):
p=>q
=> - zbiór na podstawie wektora => musi zawierać się w zbiorze wskazywanym przez strzałkę wektora =>
2.
~> - warunek konieczny, w implikacji spójnik „może” między p i q („rzucanie monetą” ~>) o definicji:
~p~>~q = p=>q
Ogólna definicja znaczka ~> (warunek konieczny):
~p~>~q
~> - zbiór na podstawie wektora ~> musi zawierać w sobie zbiór wskazywany przez strzałkę wektora ~>.

~p~>~q = p=>q
Z powyższej tożsamości wynika, że aby dowieść zachodzący warunek konieczny między ~p~>~q wystarczy dowieść warunek wystarczający p=>q zdefiniowany wyłącznie w liniach A i B w powyższej definicji.
… ale uwaga!
Dowód prawdziwości warunku wystarczającego p=>q w liniach A i B o niczym nie rozstrzyga, bowiem ten sam warunek wystarczający może wchodzić w skład definicji implikacji prostej, albo w skład definicji równoważności, to musimy dopiero udowodnić.
Równoważność, gdzie „rzucanie monetą” nie występuje, to zupełnie inna bajka niż implikacja, gdzie „rzucanie monetą” zawsze występuje.
Definicja implikacji prostej:
p=>q = ~p~>~q
Definicja równoważności:
p<=>q = (p=>q)*(~p=>~q)
gdzie:
p=>q - to jest identyczny warunek wystarczający wchodzący w skład definicji implikacji prostej albo równoważności.
Matematycznie zachodzi:
Warunek wystarczający ## implikacja prosta ## równoważność
p=>q ## p=>q=~p~>~q ## p<=>q=(p=>q)*(~p=>~q)
gdzie:
## - różne na mocy definicji
3.
~~> - naturalny spójnik „może”, wystarczy pokazać jeden przypadek prawdziwy.
Ogólna definicja znaczka ~~> (naturalny spójnik „może”):
~~> - zbiór na podstawie wektora ~~> musi mieć co najmniej jeden element wspólny ze zbiorem wskazywanym przez strzałkę wektora ~~> dnia Pią 0:12, 14 Cze 2013, w całości zmieniany 29 razy